[SDOI2010]古代猪文
题目背景
“在那山的那边海的那边有一群小肥猪。他们活泼又聪明,他们调皮又灵敏。他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心……”
——选自猪王国民歌
很久很久以前,在山的那边海的那边的某片风水宝地曾经存在过一个猪王国。猪王国地理位置偏僻,实施的是适应当时社会的自给自足的庄园经济,很少与外界联系,商贸活动就更少了。因此也很少有其他动物知道这样一个王国。
猪王国虽然不大,但是土地肥沃,屋舍俨然。如果一定要拿什么与之相比的话,那就只能是东晋陶渊明笔下的大家想象中的桃花源了。猪王勤政爱民,猪民安 居乐业,邻里和睦相处,国家秩序井然,经济欣欣向荣,社会和谐稳定。和谐的社会带给猪民们对工作火红的热情和对未来的粉色的憧憬。
小猪iPig是猪王国的一个很普通的公民。小猪今年10岁了,在大肥猪学校上小学三年级。和大多数猪一样,他不是很聪明,因此经常遇到很多或者稀奇 古怪或者旁人看来轻而易举的事情令他大伤脑筋。小猪后来参加了全猪信息学奥林匹克竞赛(Pig Olympiad in Informatics, POI),取得了不错的名次,最终保送进入了猪王国大学(Pig Kingdom University, PKU)深造。
现在的小猪已经能用计算机解决简单的问题了,比如能用P++语言编写程序计算出A + B的值。这个“成就”已经成为了他津津乐道的话题。当然,不明真相的同学们也开始对他刮目相看啦~
小猪的故事就将从此展开,伴随大家两天时间,希望大家能够喜欢小猪。
题目描述
猪王国的文明源远流长,博大精深。
iPig在大肥猪学校图书馆中查阅资料,得知远古时期猪文文字总个数为N。当然,一种语言如果字数很多,字典也相应会很大。当时的猪王国国王考虑到 如果修一本字典,规模有可能远远超过康熙字典,花费的猪力、物力将难以估量。故考虑再三没有进行这一项劳猪伤财之举。当然,猪王国的文字后来随着历史变迁 逐渐进行了简化,去掉了一些不常用的字。
iPig打算研究古时某个朝代的猪文文字。根据相关文献记载,那个朝代流传的猪文文字恰好为远古时期的k分之一,其中k是N的一个正约数(可以是1和N)。不过具体是哪k分之一,以及k是多少,由于历史过于久远,已经无从考证了。
iPig觉得只要符合文献,每一种能整除N的k都是有可能的。他打算考虑到所有可能的k。显然当k等于某个定值时,该朝的猪文文字个数为N / k。然而从N个文字中保留下N / k个的情况也是相当多的。iPig预计,如果所有可能的k的所有情况数加起来为P的话,那么他研究古代文字的代价将会是G的P次方。
现在他想知道猪王国研究古代文字的代价是多少。由于iPig觉得这个数字可能是天文数字,所以你只需要告诉他答案除以999911659的余数就可以了。
输入输出格式
输入格式:
输入文件ancient.in有且仅有一行:两个数N、G,用一个空格分开。
输出格式:
输出文件ancient.out有且仅有一行:一个数,表示答案除以999911659的余数。
输入输出样例
4 2
2048
说明
数据规模
10%的数据中,1 <= N <= 50;
20%的数据中,1 <= N <= 1000;
40%的数据中,1 <= N <= 100000;
100%的数据中,1 <= G <= 1000000000,1 <= N <= 1000000000。
题目大意:给定N,G,求
但是的x会很大,以至于无法用存储
这时要用到指数取模算法
对于G^x,我们有
下面给出证明
因为Gμ(p)≡1 (mod p)
我们令x=k*μ(p)+b
那么Gx=(Gμ(p))^k*Gb
因为(Gμ(p))^k≡1 (mod p)
因为b=x%μ(p)=x%(p-1)
所以Gx≡Gx%(p-1) (mod p)
所以对指数取模,模p-1就行了
组合数取模用Lucas
这时有一个问题:p-1不是素数,不能用lucas和求逆元
所以将p-1分解为4个素数,分别算出同余方程,再用中国剩余定理合并
这里写出p-1的4个素数:
999911658=2*3*4679*35617
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
ll Mod=;
ll fac[],A[],cnt,ys[],n,g,pri[],b[],c[],a[];
ll exgcd(ll a,ll b,ll &x,ll &y)
{
if (b==)
{
x=;y=;
return a;
}
ll d=exgcd(b,a%b,x,y);
ll t=x;x=y;y=t-(a/b)*y;
return d;
}
ll rev(ll a,ll p)
{
ll x,y;
exgcd(a,p,x,y);
return (x%p+p)%p;
}
ll C(ll x,ll y,ll p)
{
if (x>y) return ;
if (x<p&&y<p) return (fac[y]*A[x]%p)*A[y-x]%p;
return C(x%p,y%p,p)*C(x/p,y/p,p)%p;
}
ll qpow(ll x,ll y,ll p)
{
ll res=;
while (y)
{
if (y&) res=res*x%p;
x=x*x%p;
y/=;
}
return res;
}
ll cal(int p)
{int i;
fac[]=;
for (i=;i<p;i++)
fac[i]=fac[i-]*i%p;
A[]=;A[]=;
for (i=;i<p;i++)
A[i]=(p-p/i)*A[p%i]%p;
for (i=;i<p;i++)
A[i]=A[i]*A[i-]%p;
ll s=;
for (i=;i<=cnt;i++)
{
s+=C(ys[i],n,p);
s%=p;
}
return s;
}
int main()
{int i;
cin>>n>>g;
if (g==Mod+)
{
cout<<;
return ;
}
for (i=;i*i<=n;i++)
if (n%i==)
{
if (i*i==n)
ys[++cnt]=i;
else
{
ys[++cnt]=i;
ys[++cnt]=n/i;
}
}
pri[]=;pri[]=;pri[]=;pri[]=;
for (i=;i<=;i++)
b[i]=cal(pri[i]);
for (i=;i<=;i++)
c[i]=Mod/pri[i];
for (i=;i<=;i++)
a[i]=rev(c[i],pri[i]);
ll s=;
for (i=;i<=;i++)
{
s+=((c[i]*a[i]%Mod)*b[i])%Mod;
s%=Mod;
}
printf("%lld\n",qpow(g,s,Mod+));
}
[SDOI2010]古代猪文的更多相关文章
- BZOJ 1951: [Sdoi2010]古代猪文( 数论 )
显然答案是G^∑C(d,N)(d|N).O(N^0.5)枚举N的约数.取模的数999911659是质数, 考虑欧拉定理a^phi(p)=1(mod p)(a与p互质), 那么a^t mod p = a ...
- 1951: [Sdoi2010]古代猪文
1951: [Sdoi2010]古代猪文 Time Limit: 1 Sec Memory Limit: 64 MBSubmit: 2171 Solved: 904[Submit][Status] ...
- BZOJ 1951: [Sdoi2010]古代猪文 [Lucas定理 中国剩余定理]
1951: [Sdoi2010]古代猪文 Time Limit: 1 Sec Memory Limit: 64 MBSubmit: 2194 Solved: 919[Submit][Status] ...
- [SDOI2010]古代猪文 (欧拉,卢卡斯,中国剩余)
[SDOI2010]古代猪文 \(solution:\) 这道题感觉综合性极强,用到了许多数论中的知识: 质因子,约数,组合数 欧拉定理 卢卡斯定理 中国剩余定理 首先我们读题,发现题目需要我们枚举k ...
- 洛咕 P2480 [SDOI2010]古代猪文
洛咕 P2480 [SDOI2010]古代猪文 题目是要求\(G^{\sum_{d|n}C^d_n}\). 用费马小定理\(G^{\sum_{d|n}C^d_n\text{mod 999911658} ...
- 【BZOJ1951】[SDOI2010]古代猪文
[BZOJ1951][SDOI2010]古代猪文 题面 bzoj 洛谷 题解 题目实际上是要求 $ G^{\sum d|n\;C_n^d}\;mod \; 999911659 $ 而这个奇怪的模数实际 ...
- 【BZOJ1951】[Sdoi2010]古代猪文 Lucas定理+CRT
[BZOJ1951][Sdoi2010]古代猪文 Description 求$X=\sum\limits_{d|n}C_n^d$,$Ans=G^X (\mod 999911659)$. Input 有 ...
- 洛谷 P2480 [SDOI2010]古代猪文 解题报告
P2480 [SDOI2010]古代猪文 题目背景 "在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心--" ...
- 【bzoj1951】: [Sdoi2010]古代猪文 数论-中国剩余定理-Lucas定理
[bzoj1951]: [Sdoi2010]古代猪文 因为999911659是个素数 欧拉定理得 然后指数上中国剩余定理 然后分别lucas定理就好了 注意G==P的时候的特判 /* http://w ...
- 【题解】P2480 [SDOI2010]古代猪文 - 卢卡斯定理 - 中国剩余定理
P2480 [SDOI2010]古代猪文 声明:本博客所有题解都参照了网络资料或其他博客,仅为博主想加深理解而写,如有疑问欢迎与博主讨论✧。٩(ˊᗜˋ)و✧*。 题目描述 猪王国的文明源远流长,博大精 ...
随机推荐
- NetFPGA-1G-CML点亮 LED
前言 用vivado建立工程的时候选择的型号为:XC7K325tffg676-1 在以下代码文件中,仿真与设计都没有问题.在xdc文件中的时钟约束与锁相环配置中还存在问题,没有寻找到解决办法 使用手册 ...
- Css之导航栏学习
Css: ul { list-style-type:none; margin:; padding:; overflow:hidden; background-color:blue; /*固定在顶部*/ ...
- ZendStudio的使用技巧
为了使得ZendStudio支持volt模版可以在首选项中的ContentType加上.volt就行 在ZendStudio中的->help中有一个installNewssoftWare,然后会 ...
- SQL Server(MySql)中的联合主键(联合索引) 索引分析
最近有人问到这个问题,之前也一直没有深究联合索引具体使用逻辑,查阅多篇文章,并经过测试,得出一些结论 测试环境:SQL Server 2008 R2 测试结果与MySql联合索引查询机制类似,可以认为 ...
- Python内置函数(5)——pow
英文文档: pow(x, y[, z]) Return x to the power y; if z is present, return x to the power y, modulo z (co ...
- 从一个事件绑定说起 - DOM
事件绑定的方式 给 DOM 元素绑定事件分为两大类:在 html 中直接绑定 和 在 JavaScript 中绑定. Bind in HTML 在 HTML 中绑定事件叫做内联绑定事件,HTML 的元 ...
- CentOS7.4下的 JDK1.8 安装
一.卸载老的JDK 如果需要卸载OpenJDK,执行以下操作: [root@localhost ~]# rpm -e --nodeps tzdata-java-2014i-1.el7.noarch[r ...
- DevExpress控件的GridControl实现行多选
最近用到DevExpress控件的GridControl控件,需要用到行多选的操作,在网上找的资料,自己总结一下. 先展示一下效果:
- 浅谈Web网站的架构演变过程
前言 我们以javaweb为例,来搭建一个简单的电商系统,看看这个系统可以如何一步步演变. 该系统具备的功能: 用户模块:用户注册和管理 商品模块:商品展示和管理 交易模块:创建交易和管理 阶 ...
- Linux下安装jmeter
一.用Xftp上传apache-jmeter-2.13.tgz到Linux系统里 二.解压apache-jmeter-2.13.tgz,tar xzfv apache-jmeter-2.13.tgz ...