●BZOJ 2154 Crash的数字表格
题链:
http://www.lydsy.com/JudgeOnline/problem.php?id=2154
题解:
莫比乌斯反演。
题意还是很清楚的,就不赘述了。
显然有
$ANS=\sum_{i=1\;j=1}^{n\;m} lcm(i,j)$
化为较为熟悉的gcd形式:
$\quad\quad=\sum_{i=1\;j=1}^{n\;m} \frac{i \times j}{gcd(i,j)}$
令$g$为gcd的值,$F(n,m)=\sum i\times j,满足1\leq i \leq \lfloor \frac{n}{g}\rfloor,1\leq j \leq \lfloor \frac{m}{g} \rfloor,且gcd(i,j)=1$
那么,$ANS=\sum_{g=1}^{min(n,m)} g\times F(n,m)$
如果已知$F(n,m)$的值,那么ANS就可以在$O\sqrt N$的复杂度内求出。
接下来看看对于一个确定的g,$F(n,m)$怎么求
即我们要求满足$1\leq i \leq \lfloor \frac{n}{g}\rfloor,1\leq j \leq \lfloor \frac{m}{g} \rfloor$,且$gcd(i,j)=1$的所有$i \times j$的和
还记得这个题么?●HDU 1695 GCD,让求的是满足上述条件的$(i,j)$的对数。
我们仍可以类似地去求:(令$x=\lfloor \frac{n}{g}\rfloor,y=\lfloor \frac{m}{g} \rfloor$)
令$t(k)为gcd(i,j)=k的i\times j的和$
$T(k)为gcd(x,y)=\lambda k的i\times j的和$
显然$T(k)=\sum_{k|d}{f(d)}$,即T为t的倍数关系和函数
考虑一下如何计算T(k)。
首先i的取值有:$k,2k,3k,\cdots,\lfloor \frac{x}{k} \rfloor k$
首先j的取值有:$k,2k,3k,\cdots,\lfloor \frac{y}{k} \rfloor k$
任意的两两组合都是T(k)的一部分。
令$sum(a,b)=\frac{(1+a)a}{2}\times\frac{(1+b)b}{2}$
所以$T(k)=k^2\times sum(\lfloor \frac{x}{k} \rfloor,\lfloor \frac{y}{k} \rfloor)$
那么由莫比乌斯反演公式的形式二(倍数关系那个式子):
$t(k)=\sum_{k|d}\mu(\frac{d}{k})T(d)$
$\quad\quad=\sum_{k|d}\mu(\frac{d}{k})d^2\times sum(\lfloor \frac{x}{d} \rfloor,\lfloor \frac{y}{d} \rfloor)$
而我们要求的是t(1),所以
$t(1)=\sum_{d=1}^{min(\lfloor \frac{n}{g}\rfloor,\lfloor \frac{m}{g}\rfloor)}\mu(d)d^2\times sum(\lfloor \frac{x}{d} \rfloor,\lfloor \frac{y}{d} \rfloor)$
显然,这个式子也可以在$O\sqrt N$的复杂度内求出。
所以综上,时间复杂度为$O(N)$
代码:
#include<cstdio>
#include<cstring>
#include<iostream>
#define MAXN 10000050
using namespace std;
const int mod=20101009;
int mu[MAXN],pmui2[MAXN];
void Sieve(int n){
static bool np[MAXN];
static int prime[MAXN],pnt;
mu[1]=pmui2[1]=1;
for(int i=2;i<=n;i++){
if(!np[i]) prime[++pnt]=i,mu[i]=-1;
for(int j=1;j<=pnt&&i<=n/prime[j];j++){
np[i*prime[j]]=1;
if(i%prime[j]) mu[i*prime[j]]=-mu[i];
else{mu[i*prime[j]]=0; break;}
}
pmui2[i]=(pmui2[i-1]+1ll*mu[i]*i%mod*i%mod)%mod;
}
}
int sum(int n,int m){
return (1ll*(1+n)*n/2%mod)*(1ll*(1+m)*m/2%mod)%mod;
}
int F(int n,int m){
int mini=min(n,m),ret=0;
for(int d=1,last;d<=mini;d=last+1){
last=min(n/(n/d),m/(m/d));
ret=(1ll*ret+1ll*(pmui2[last]-pmui2[d-1]+mod)%mod*sum(n/d,m/d)%mod)%mod;
}
return ret;
}
int main(){
int n,m,mini,ans=0;
scanf("%d%d",&n,&m); mini=min(n,m);
Sieve(mini);
for(int g=1,last;g<=mini;g=last+1){
last=min(n/(n/g),m/(m/g));
ans=(1ll*ans+1ll*(g+last)*(last-g+1)/2%mod*F(n/g,m/g)%mod)%mod;
}
printf("%d\n",(ans+mod)%mod);
return 0;
}
●BZOJ 2154 Crash的数字表格的更多相关文章
- 【莫比乌斯反演】关于Mobius反演与lcm的一些关系与问题简化(BZOJ 2154 crash的数字表格&&BZOJ 2693 jzptab)
BZOJ 2154 crash的数字表格 Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b ...
- [bzoj 2693] jzptab & [bzoj 2154] Crash的数字表格 (莫比乌斯反演)
题目描述 TTT组数据,给出NNN,MMM,求∑x=1N∑y=1Mlim(x,y)\sum_{x=1}^N\sum_{y=1}^M lim(x,y)\newlinex=1∑Ny=1∑Mlim(x, ...
- [BZOJ 2154]Crash的数字表格(莫比乌斯反演+数论分块)
[BZOJ 2154]Crash的数字表格(莫比乌斯反演+数论分块) 题面 求 \[\sum_{i=1}^{n} \sum_{j=1}^{m} \mathrm{lcm}(i,j)\] 分析 \[\su ...
- BZOJ 2154: Crash的数字表格 [莫比乌斯反演]
2154: Crash的数字表格 Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 2924 Solved: 1091[Submit][Status][ ...
- Bzoj 2154: Crash的数字表格(积性函数)
2154: Crash的数字表格 Time Limit: 20 Sec Memory Limit: 259 MB Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least ...
- bzoj 2154 Crash的数字表格(莫比乌斯反演及优化)
Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b)表示能同时被a和b整除的最小正整数.例如 ...
- 【刷题】BZOJ 2154 Crash的数字表格
Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b)表示能同时被a和b整除的最小正整数.例如 ...
- BZOJ 2154 Crash的数字表格
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2154 题意: 思路: i64 mou[N]; void init(int N){ ...
- BZOJ 2154 Crash的数字表格 ——莫比乌斯反演
求$\sum_{i=1}^n\sum_{j=1}^n lcm(i,j)$ 枚举因数 $ans=\sum_{d<=n} F(d) * d$ $F(d)$表示给定范围内两两$\sum_{gcd(i, ...
随机推荐
- 团队作业7——第二次项目冲刺(Beta版本12.10)
项目每个成员的进展.存在问题.接下来两天的安排. 已完成的内容:头像功能原型设计.头像裁剪功能.头像上传功能.测试 计划完成的内容:头像功能测试.bug修复 每个人的工作 (有work item 的I ...
- STL常用整理
S T L Sting: << 判断拼音序 size length 字符串长度 str[n] 代表字符串中的一个字符 可用作左值 string::size_type 用于表示字符串长度计量 ...
- Webview之H5页面调用android的图库及文件管理
h5页面打开图片管理器 一般页面在pc打开文件管理器是用 type="file"的代码,可是这在android的webview是无效的,必须为webview设定WebChromeC ...
- Vue.js自己从官网整理的东东
1.采用简洁的模板语法来声明渲染数据: <div id="app"> {{ message }} </div> var app = new Vue({ el ...
- 一个诚实的孩纸选Python的原因
我之所以会选择python语言程序设计这门课,是因为我一开始预选选的选修课都没选上,然后在补选的时候,在别人选剩的课里面选择了python. 上了两节课之后,我发现python还挺有意思的,挺喜欢py ...
- Spring Security入门(1-13)Spring Security的投票机制和投票器
1.三种表决方式,默认是 一票制AffirmativeBased public interface AccessDecisionManager { /** * 通过传递的参数来决定用户是否有访问对应受 ...
- spring boot 中active的profile会和标准配置合并吗
如下图,两个profile配置文件,一个默认的(application.properties),一个是test的. 活跃配置为test. spring.profiles.active=test ste ...
- QT 设计师使用样式表添加背景
QT create中样式表可以用来设置背景图.背景颜色.字体大小格式颜色等 1.添加背景图的话需要先添加资源文件 右击项目文件选择添加新文件,再选择QT资源文件(QT resource file)然后 ...
- Menubutton按钮弹出菜单
#按钮弹出菜单 from tkinter import * root =Tk() def callback(): print('我被调用了') m = Menubutton(root,text = ' ...
- Jenkins的安装
安装环境: 512M内存 10G硬盘空间 Java 8环境 先来创建jenkins的运行目录: mkdir /data/jenkins && cd /data/jenkins 下载je ...