POJ - 2912 Rochambeau 种类并查集
题意:有三组小朋友在玩石头剪刀布,同一组的小朋友出的手势是一样的。这些小朋友中有一个是裁判,他可以随便出手势。现在给定一些小朋友的关系,问能否判断出裁判,如果能最早什么时候能够找到裁判。
思路:枚举每个小朋友,删除与这个小朋友有关的边,利用并查集判断是否有冲突,如果有冲突说明这个小朋友不能成为裁判,因为不可能有两个裁判。记录可能的裁判的数量,以及对应每个小朋友最早冲突的时间。
如果裁判的数量为1,很明显这个小朋友就是裁判,那么如何求得最早判定的时间?利用排除法,如果能够尽快的排除其他n-1个小朋友成为裁判的机会,那么答案就是max(err[i]),err[i]就是每个小朋友冲突的最早时间。
AC代码
#include <cstdio>
#include <cmath>
#include <cctype>
#include <algorithm>
#include <cstring>
#include <utility>
#include <string>
#include <iostream>
#include <map>
#include <set>
#include <vector>
#include <queue>
#include <stack>
using namespace std;
#pragma comment(linker, "/STACK:1024000000,1024000000")
#define eps 1e-10
#define inf 0x3f3f3f3f
#define PI pair<int, int>
typedef long long LL;
const int maxn = 500 + 5;
struct node{
int par;
int real;
}a[maxn];
struct Edge{
int u, v, k;
}b[maxn<<2];
void init(int n) {
for(int i = 0; i < n; ++i) {
a[i].par = i;
a[i].real = 0;
}
}
int find(int x) {
if(a[x].par == x) return x;
int par = find(a[x].par);
a[x].real = (a[x].real + a[a[x].par].real) % 3;
return a[x].par = par;
}
bool unionset(int x, int y, int r) {
int rx = find(x), ry = find(y);
if(rx == ry) {
int rr = (3 - a[y].real + a[x].real) % 3;
if(rr != r) return false;
}
else { //合并
a[rx].par = y;
a[rx].real = (3 - a[x].real + r) % 3;
}
return true;
}
int main() {
int n, m;
while(scanf("%d%d", &n, &m) == 2) {
getchar();
char ch;
for(int i = 0; i < m; ++i) {
scanf("%d", &b[i].u);
while(ch = getchar()) {
if(ch == '=' || ch == '>' || ch == '<') {
if(ch == '=') b[i].k = 0;
else if(ch == '>') b[i].k = 1;
else b[i].k = 2;
break;
}
}
scanf("%d", &b[i].v);
//printf("%d %d %d\n", b[i].u, b[i].k, b[i].v);
}
int err = 0, flag, cnt = 0, judge;
for(int i = 0; i < n; ++i) { //枚举裁判
init(n);
int flag = 1;
for(int j = 0; j < m; ++j) {
int u = b[j].u, v = b[j].v;
if(u == i || v == i) continue;
if(!unionset(u, v, b[j].k)) {
err = max(err, j+1);
flag = 0;
break;
}
}
if(flag) {
++cnt;
judge = i;
}
}
if(cnt == 0) printf("Impossible\n");
else if(cnt >= 2) printf("Can not determine\n");
else printf("Player %d can be determined to be the judge after %d lines\n", judge, err);
}
return 0;
}
如有不当之处欢迎指出!
POJ - 2912 Rochambeau 种类并查集的更多相关文章
- POJ2912 Rochambeau —— 种类并查集 + 枚举
题目链接:http://poj.org/problem?id=2912 Rochambeau Time Limit: 5000MS Memory Limit: 65536K Total Submi ...
- POJ 1182 食物链(种类并查集)
记得第一次做这道题的时候,推关系感觉有点复杂,而且写完代码后一直WA,始终找不出错误. 在A了十几道并查集后,再做这道题,发现太小儿科了.发现原来之所以WA,就在于查找根节点时,没有同步更新子节点相对 ...
- A Bug’s Life POJ - 2492(种类并查集)
题目链接 每次给出两个昆虫的关系(异性关系),然后发现这些条件中是否有悖论 就比如说第一组数据 1 2 2 3 1 3 1和2是异性,2和3是异性,然后说1和3是异性就显然不对了. 我们同样可以思考一 ...
- 食物链 POJ 1182(种类并查集)
Description 动物王国中有三类动物A,B,C,这三类动物的食物链构成了有趣的环形.A吃B, B吃C,C吃A. 现有N个动物,以1-N编号.每个动物都是A,B,C中的一种,但是我们并不知道它到 ...
- poj 1182:食物链(种类并查集,食物链问题)
食物链 Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 44168 Accepted: 12878 Description ...
- POJ 1733 Parity game(种类并查集)
http://poj.org/problem?id=1733 题意: 给出一个01串,有多次询问,每次回答[l,r]这个区间内1的个数的奇偶性,但是其中有一些回答是错误的,问到第几个回答时与前面的回答 ...
- Poj(1182),种类并查集
题目链接:http://poj.org/problem?id=1182 再次熟练种类并查集,又积累点经验,和技巧,rank 0 2 1 先计算father[x] ,再更新rank[x]; #inclu ...
- Poj(1703),种类并查集
题目链接:http://poj.org/problem?id=1703 已经不是第一次接触种类并查集了,直到今天才搞懂. 感谢红黑联盟,感谢杰哥!!! 每个节点只要关系确定,不管是不是同一个集合里面, ...
- 种类并查集,Poj(1703)
题目链接:http://poj.org/problem?id=1703 第一次做种类并查集,有的地方还不是很清楚,想了一上午,有点明白了,这里记录一下. 这里我参考的红黑联盟的题解. 关键:种类并查集 ...
随机推荐
- Linux几个小杂碎点(更新中)
1 BIOS时间和系统时间问题 安装完CentOS后,系统时间是CST时间,而BIOS时间是UTC时间,因此系统时间会比BIOS时间快8个小时.如果您设置BIOS自动开机的话,就会总是差个8小时.需要 ...
- java根据模板导出pdf
在网上看了一些Java生成pdf文件的,写的有点乱,有的不支持写入中文字体,有的不支持模板,有的只是随便把数据放里面生成文件,完全不考虑数据怎样放置的以及以后的维护性,想想还是自己总结一个完全版的导出 ...
- Electron 打包Mac安装包代码签名问题解决方案Could not get code signature for running application
最近一直在做electron应用的打包,集成mac版本的自动更新时出现了问题. Error: Could not get code signature for running application ...
- PHP支付第3方接口使用方法。
去年写过一遍博客文章. 网站申请不到支付宝接口.微信接口,免接口收款实现方式. 网络在发展,支付宝也好,微信也好,技术在进步,这种方式已经不能使用了,明显的一个问题是,支付宝的刷新工具,会定时退出,必 ...
- docker命令行学习
docker命令行学习 docker run docker run --help:老实说这条最管用了 docker run -it:交互模式,允许控制台输出 docker run -d:detach, ...
- 怎么改变title属性的样式?
我们经常会设置title属性来显示提示的内容,最常见的一种就是超过文本框的内容显示省略号,鼠标移上去显示完整的内容,这里顺便说下显示省略号的设置,如 div{text-overflow:ellipsi ...
- COGNOS安装与发布报表步骤
1. 安装 1.1安装前准备 安装COGNOS需要先安装好iis和sql Server(因为我们用的数据库系统就是SQLServer). 1.2安装过程 1) 找到BI Server文件 2) ...
- 正确理解python的装饰器
一直在用别人写的装饰器,从来没有对其原理进行深入的探究.今天趁有点闲着的时间,把装饰器的原理好好看了一遍,做一下整理. 一.装饰器的基本原理 装饰器就是一个可以接受调用也可以返回调用的调用.装饰器本身 ...
- http目录显示时间与服务器相差8小时
一直用nginx做http服务,代码里访问过文件地址,并未认真关注过访问http目录下的时间戳.今天浏览文件的时候发现一个问题.web上显示的文件时间戳与服务器时间相比差8个小时.具体表现看下图: w ...
- 什么是SSL
什么是SSL 简单来说,在我们使用的浏览器中都默认信任着全世界多个最权威的CA机构(证书颁发机构),如下图: 上图中,受信任的根证书颁发机构列表里的都是我们浏览器中默认信任的CA机构,我们只需要向他们 ...