一.Spark心跳概述

前面两节中介绍了Spark RPC的基本知识,以及深入剖析了Spark RPC中一些源码的实现流程。

具体可以看这里:

这一节我们来看看一个Spark RPC中的运用实例--Spark的心跳机制。当然这次主要还是从代码的角度来看。

我们首先要知道Spark的心跳有什么用。心跳是分布式技术的基础,我们知道在Spark中,是有一个Master和众多的Worker,那么Master怎么知道每个Worker的情况呢,这就需要借助心跳机制了。心跳除了传输信息,另一个主要的作用就是Worker告诉Master它还活着,当心跳停止时,方便Master进行一些容错操作,比如数据转移备份等等。

与之前讲Spark RPC一样,我们同样分成两部分来分析Spark的心跳机制,分为服务端(Spark Context)和客户端(Executor)。

二. Spark心跳服务端heartbeatReceiver解析

我们可以发现,SparkContext中有关于心跳的类以及RpcEndpoint注册代码。

class SparkContext(config: SparkConf) extends Logging {
......
private var _heartbeatReceiver: RpcEndpointRef = _
......
//向 RpcEnv 注册 Endpoint。
_heartbeatReceiver = env.rpcEnv.setupEndpoint(HeartbeatReceiver.ENDPOINT_NAME, new HeartbeatReceiver(this))
......
val (sched, ts) = SparkContext.createTaskScheduler(this, master, deployMode)
_schedulerBackend = sched
_taskScheduler = ts
_dagScheduler = new DAGScheduler(this)
_heartbeatReceiver.ask[Boolean](TaskSchedulerIsSet)
......
}

这里rpcEnv已经在上下文中创建好,通过setupEndpoint向rpcEnv注册一个心跳的Endpoint。还记得上一节中HelloworldServer的例子吗,在setupEndpoint方法中,会去调用Dispatcher创建这个Endpoint(这里就是HeartbeatReceiver)对应的Inbox和EndpointRef,然后在Inbox监听是否有新消息,有新消息则处理它。注册完会返回一个EndpointRef(注意这里有Refer,即是客户端,用来发送消息的)。

所以这一句

_heartbeatReceiver = env.rpcEnv.setupEndpoint(HeartbeatReceiver.ENDPOINT_NAME, new HeartbeatReceiver(this))

就已经完成了心跳服务端监听的功能。

那么这条代码的作用呢?

_heartbeatReceiver.ask[Boolean](TaskSchedulerIsSet)

这里我们要看上面那句val (sched, ts) = SparkContext.createTaskScheduler(this, master, deployMode),它会根据master url创建SchedulerBackend和TaskScheduler。这两个类都是和资源调度有关的,所以需要借助心跳机制来传送消息。其中TaskScheduler负责任务调度资源分配,SchedulerBackend负责与Master、Worker通信收集Worker上分配给该应用使用的资源情况。

这里主要是告诉HeartbeatReceiver(心跳)的监听端,告诉它TaskScheduler这个东西已经设置好啦。HeartbeatReceiver就会回应你说好的,我知道的,并持有这个TaskScheduler。

到这里服务端heartbeatReceiver就差不多完了,我们可以发现,HeartbeatReceiver除了向RpcEnv注册并监听消息之外,还会去持有一些资源调度相关的类,比如TaskSchedulerIsSet。

三. Spark心跳客户端发送心跳解析

发送心跳发送在Worker,每个Worker都会有一个Executor,所以我们可以发现在Executor中发送心跳的代码。

private[spark] class Executor(
executorId: String,
executorHostname: String,
env: SparkEnv,
userClassPath: Seq[URL] = Nil,
isLocal: Boolean = false)
extends Logging {
......
// must be initialized before running startDriverHeartbeat()
//创建心跳的 EndpointRef
private val heartbeatReceiverRef = RpcUtils.makeDriverRef(HeartbeatReceiver.ENDPOINT_NAME, conf, env.rpcEnv)
......
startDriverHeartbeater()
......
/**
* Schedules a task to report heartbeat and partial metrics for active tasks to driver.
* 用一个 task 来报告活跃任务的信息以及发送心跳。
*/
private def startDriverHeartbeater(): Unit = {
val intervalMs = conf.getTimeAsMs("spark.executor.heartbeatInterval", "10s") // Wait a random interval so the heartbeats don't end up in sync
val initialDelay = intervalMs + (math.random * intervalMs).asInstanceOf[Int] val heartbeatTask = new Runnable() {
override def run(): Unit = Utils.logUncaughtExceptions(reportHeartBeat())
}
//heartbeater是一个单线程线程池,scheduleAtFixedRate 是定时执行任务用的,和 schedule 类似,只是一些策略不同。
heartbeater.scheduleAtFixedRate(heartbeatTask, initialDelay, intervalMs, TimeUnit.MILLISECONDS)
}
......
}

可以看到,在Executor中会创建心跳的EndpointRef,变量名为heartbeatReceiverRef。

然后我们主要看startDriverHeartbeater()这个方法,它是关键。

我们可以看到最后部分代码

    val heartbeatTask = new Runnable() {
override def run(): Unit = Utils.logUncaughtExceptions(reportHeartBeat())
}
heartbeater.scheduleAtFixedRate(heartbeatTask, initialDelay, intervalMs, TimeUnit.MILLISECONDS)

heartbeatTask是一个Runaable,即一个线程任务。scheduleAtFixedRate则是java concurrent包中用来执行定时任务的一个类,这里的意思是每隔10s跑一次heartbeatTask中的线程任务,超时时间30s。

为什么到这里还是没看到heartbeatReceiverRef呢,说好的发送心跳呢?别急,其实在heartbeatTask线程任务中又调用了另一个方法,我们到里面去一探究竟。

private[spark] class Executor(
executorId: String,
executorHostname: String,
env: SparkEnv,
userClassPath: Seq[URL] = Nil,
isLocal: Boolean = false)
extends Logging {
......
private def reportHeartBeat(): Unit = {
// list of (task id, accumUpdates) to send back to the driver
val accumUpdates = new ArrayBuffer[(Long, Seq[AccumulatorV2[_, _]])]()
val curGCTime = computeTotalGcTime() for (taskRunner <- runningTasks.values().asScala) {
if (taskRunner.task != null) {
taskRunner.task.metrics.mergeShuffleReadMetrics()
taskRunner.task.metrics.setJvmGCTime(curGCTime - taskRunner.startGCTime)
accumUpdates += ((taskRunner.taskId, taskRunner.task.metrics.accumulators()))
}
} val message = Heartbeat(executorId, accumUpdates.toArray, env.blockManager.blockManagerId)
try {
//终于看到 heartbeatReceiverRef 的身影了
val response = heartbeatReceiverRef.askWithRetry[HeartbeatResponse](
message, RpcTimeout(conf, "spark.executor.heartbeatInterval", "10s"))
if (response.reregisterBlockManager) {
logInfo("Told to re-register on heartbeat")
env.blockManager.reregister()
}
heartbeatFailures = 0
} catch {
case NonFatal(e) =>
logWarning("Issue communicating with driver in heartbeater", e)
heartbeatFailures += 1
if (heartbeatFailures >= HEARTBEAT_MAX_FAILURES) {
logError(s"Exit as unable to send heartbeats to driver " +
s"more than $HEARTBEAT_MAX_FAILURES times")
System.exit(ExecutorExitCode.HEARTBEAT_FAILURE)
}
}
}
...... }

可以看到,这里heartbeatReceiverRef和我们上一节的例子,HelloworldClient类似,核心也是调用了askWithRetry()方法,这个方法是通过同步的方式发送Rpc消息。而这个方法里其他代码其实就是获取task的信息啊,或者是一些容错处理。核心就是调用askWithRetry()方法来发送消息。

看到这你就明白了吧。Executor初始化便会用一个定时任务不断发送心跳,同时当有task的时候,会获取task的信息一并发送。这就是心跳的大概内容了。

总的来说Spark心跳的代码也是比较杂的,不过这些也都是为了让设计更加高耦合,低内聚,让这些代码更加方便得复用。不过通过层层剖析,我们还是发现其实它底层就是我们之前说到的Spark RPC框架的内容!!

OK,Spark RPC三部曲完毕。如果你能看到这里那不容易呀,给自己点个赞吧!!


推荐阅读 :

从分治算法到 MapReduce

大数据存储的进化史 --从 RAID 到 Hadoop Hdfs

一个故事告诉你什么才是好的程序员

Spark RPC框架源码分析(三)Spark心跳机制分析的更多相关文章

  1. Spark RPC框架源码分析(一)简述

    Spark RPC系列: Spark RPC框架源码分析(一)运行时序 Spark RPC框架源码分析(二)运行时序 Spark RPC框架源码分析(三)运行时序 一. Spark rpc框架概述 S ...

  2. Spark RPC框架源码分析(二)RPC运行时序

    前情提要: Spark RPC框架源码分析(一)简述 一. Spark RPC概述 上一篇我们已经说明了Spark RPC框架的一个简单例子,Spark RPC相关的两个编程模型,Actor模型和Re ...

  3. 框架源码系列三:手写Spring AOP(AOP分析、AOP概念学习、切面实现、织入实现)

    一.AOP分析 问题1:AOP是什么? Aspect Oriented Programming 面向切面编程,在不改变类的代码的情况下,对类方法进行功能增强. 问题2:我们需要做什么? 在我们的框架中 ...

  4. Java集合框架源码(三)——arrayList

    1. ArrayList概述: ArrayList是List接口的可变数组的实现.实现了所有可选列表操作,并允许包括 null 在内的所有元素.除了实现 List 接口外,此类还提供一些方法来操作内部 ...

  5. Spark Scheduler模块源码分析之TaskScheduler和SchedulerBackend

    本文是Scheduler模块源码分析的第二篇,第一篇Spark Scheduler模块源码分析之DAGScheduler主要分析了DAGScheduler.本文接下来结合Spark-1.6.0的源码继 ...

  6. 【原】Spark中Client源码分析(二)

    继续前一篇的内容.前一篇内容为: Spark中Client源码分析(一)http://www.cnblogs.com/yourarebest/p/5313006.html DriverClient中的 ...

  7. 【原】Spark中Master源码分析(一)

    Master作为集群的Manager,对于集群的健壮运行发挥着十分重要的作用.下面,我们一起了解一下Master是听从Client(Leader)的号召,如何管理好Worker的吧. 1.家当(静态属 ...

  8. Spark Scheduler模块源码分析之DAGScheduler

    本文主要结合Spark-1.6.0的源码,对Spark中任务调度模块的执行过程进行分析.Spark Application在遇到Action操作时才会真正的提交任务并进行计算.这时Spark会根据Ac ...

  9. Apache Spark源码走读之6 -- 存储子系统分析

    欢迎转载,转载请注明出处,徽沪一郎. 楔子 Spark计算速度远胜于Hadoop的原因之一就在于中间结果是缓存在内存而不是直接写入到disk,本文尝试分析Spark中存储子系统的构成,并以数据写入和数 ...

随机推荐

  1. linux文件权限总结(创建root不可以删除文件、只可追加的日志文件等)

    文件类型 对于文件和目录的访问权力是根据读访问,写访问,和执行访问来定义的. 我们来看一下 ls 命令的输出结果 [root@iZ28dr6w0qvZ test]# ls -l 总用量 72 -rw- ...

  2. DSAPI DS密法

    DS密法是DYLIKE本人研发的一种针对文本字符串的高强度加密方法,本加密方法的优点是同源不同密,同一个源文本每次加密的结果都不同,长度也不同.密钥最大可达String类型的字符最大长度.缺点是解密时 ...

  3. 【原创】详细案例解剖——浅谈Redis缓存的常用5种方式(String,Hash,List,set,SetSorted )

    很多小伙伴没接触过Redis,以至于去学习的时候感觉云里雾里的,就有一种:教程随你出,懂了算我输的感觉. 每次听圈内人在谈论的时候总是插不上话,小编就偷偷去了解了一下,也算是初入门径. 然后就整理了一 ...

  4. ERP小金刚Pro专业大比拼: Dynamics,NetSuite和Odoo

    前言 在过去的15年中,新技术推动了大大小企业的重新思考他们的流程管理涉及不断变化的业务所创造的新动态景观.实施ERP是许多企业为帮助组织而采取的措施并优化他们开展业务的方式.然而,市场上目前有许多商 ...

  5. Android之CircleImageView使用

    文章大纲 一.什么是CircleImageView二.代码实战三.项目源码下载 一.什么是CircleImageView   圆角 ImageView,在我们的 App 中这个想必是太常见了,也许我们 ...

  6. 20190415 - iOS11 无法连接到 App Store 的解决办法

    问题:更新 iOS 11 后,打开 App Store 提示: 无法连接至 app store 解决: 进入 iOS 系统[设置][iTunes Store 与 App Store],退出当前登录用户 ...

  7. 【JavaScript动画基础】学习笔记(一)-- 旋转箭头

    随着鼠标的移动旋转箭头. requestAnimationFrame 在requestAnimationFrame之前我们可以用setInterval来实现动画的循环: function drawFr ...

  8. 从fastjson多层泛型嵌套解析,看jdk泛型推断

    给你一组json数据结构,你把它解析出来到项目中,你会怎么做? // data1 sample { "code" : "1", "msg" ...

  9. 从壹开始前后端分离 [ Vue2.0+.NET Core2.1] 二十║Vue基础终篇:传值+组件+项目说明

    缘起 新的一天又开始啦,大家也应该看到我的标题了,是滴,Vue基础基本就到这里了,咱们回头看看这一路,如果你都看了,并且都会写了,那么现在你就可以自己写一个Demo了,如果再了解一点路由,ajax请求 ...

  10. python获取set-cookies

    python获取set-cookies #!/usr/bin/python3.4 # -*- coding: utf-8 -*- import requests url = "https:/ ...