在早期的UNIX中信号是不可靠的,不可靠在这里指的是:信号可能丢失,一个信号发生了,但进程却可能一直不知道这一点。

现在Linux 在SIGRTMIN实时信号之前的都叫不可靠信号,这里的不可靠主要是不支持信号队列,就是当多个信号发生在进程中的时候(收到信号的速度超过进程处理的速度的时候),这些没来的及处理的信号就会被丢掉,仅仅留下一个信号。

可靠信号是多个信号发送到进程的时候(收到信号的速度超过进程处理信号的速度的时候),这些没来的及处理的信号就会排入进程的队列。等进程有机会来处理的时候,依次再处理,信号不丢失。

通过一个实例来说明 不可靠信号(SIGUSR1(10)) 、可靠信号SIGRTMIN(ubuntu上是34)丢失的情况:

#include <stdlib.h>
#include <iostream>
#include <signal.h>
#include <stdio.h>
#include <errno.h>
using namespace std;
int g_unreliable = 0;
int g_reliable = 0;
void signal_dispath(int signo)
{
if(signo == SIGUSR1)
{
cout<<"receving signal SIGUSR1"<<endl;
g_unreliable++;
}
else if(signo == SIGRTMIN)
{
cout<<"receving signal SIGRTMIN"<<endl;
g_reliable++;
}
}
void output_myself()
{
cout<<"^^^^^^^^^^^^^^^^^^^^^^^^^^^"<<endl;
cout<<"^^^^^^^ Hello World ^^^^^^^"<<endl;
cout<<"^^^^^^^ I'm LeoK ^^^^^^^"<<endl;
cout<<"^^^^^^^^^^^^^^^^^^^^^^^^^^^"<<endl;
}
int main(int argc, char** argv)
{
if(argc != 1)
{
cout<<"this program need not paramter"<<endl;
return 0;
}
/* 每个程序的信息需要打印*/
output_myself();
if(signal(SIGUSR1, signal_dispath) == SIG_ERR)
{
perror("register SIGUSR1 signal failed");
return -1;
}
if(signal(SIGRTMIN, signal_dispath) == SIG_ERR)
{
perror("register SIGRTMIN signal failed");
return -1;
} sigset_t set;
sigset_t oset;
/* 清除set中的信号,把这个set置为空 */
sigemptyset(&set);
/* 往set中添加SIGUSR1信号 */
sigaddset(&set, SIGUSR1);
/* 往set中添加SIGRTMIN信号 */
sigaddset(&set, SIGRTMIN);
if(sigprocmask(SIG_BLOCK, &set, &oset) == -1)
{
perror("set process signal to be set failed");
return -1;
}
sleep(10);
if(sigpending(&set) == -1)
{
perror("sigpending get signal mask failed");
return -1;
}
/* 判断信号是不是在信号屏蔽字中 */
/* SIGUSR1 */
int ret = -1;
if((ret = sigismember(&set, SIGUSR1)) == -1)
{
perror("sigismember test SIGUSR1 failed");
return -1;
}
else if(ret == 0)
{
cout<<"SIGUSR1 signal exist not signal mask"<<endl;
}
else
{
cout<<"SIGUSR1 signal exist signal mask"<<endl;
} sleep(2);
/* SIGRTMIN */
if((ret = sigismember(&set, SIGRTMIN)) == -1)
{
perror("sigismember test SIGRTMIN failed");
return -1;
}
else if(ret == 0)
{
cout<<"SIGRTMIN signal exist not signal mask"<<endl;
}
else
{
cout<<"SIGRTMIN signal exist signal mask"<<endl;
}
/* 休眠30s */
sleep(30); /*解除对SIGRTMIN和SIGUSR1的屏蔽字*/
if(sigprocmask(SIG_SETMASK, &oset, NULL) == -1)
{
perror("set oldset failed");
return -1;
}
cout<<"SIGUSR1: "<<g_unreliable<<endl;
cout<<"SIGRTMIN: "<<g_reliable<<endl;
output_myself();
return 0;
}

该程序的解释是

首先把信号SIGUSR1和SIGRTMIN这两个信号通过sigaddset这个函数加入是使用的set(类型sigset_t)这个信号集合中,通过sigprocmask把进程的信号屏蔽字设置为set这个集合,这个时候让进程睡眠(在这个时候对于SIGUSR1、SIGRTMIN这两个信号是阻塞的,来达到进程处理的速度低于信号发送的速度),在睡眠的时候,通过脚本如下:

usr.sh

#/bin/bash
i=0;
for((i=0;i<20;i++));
do kill -10 `pidof a.out`;done

min.sh

#/bin/bash
i=0;
for((i=0;i<20;i++));
do kill -34 `pidof a.out`;done

发送信号SIGUSR1 和SIGRTMIN给进程a.out(test.cpp编译后的可执行程序)

最后的输出如下:

huangcheng@ubuntu:~$ ./a.out
^^^^^^^^^^^^^^^^^^^^^^^^^^^
^^^^^^^ Hello World ^^^^^^^
^^^^^^^ I'm LeoK ^^^^^^^
^^^^^^^^^^^^^^^^^^^^^^^^^^^
SIGUSR1 signal exist signal mask
SIGRTMIN signal exist signal mask
receving signal SIGRTMIN
receving signal SIGRTMIN
receving signal SIGRTMIN
receving signal SIGRTMIN
receving signal SIGRTMIN
receving signal SIGRTMIN
receving signal SIGRTMIN
receving signal SIGRTMIN
receving signal SIGRTMIN
receving signal SIGRTMIN
receving signal SIGRTMIN
receving signal SIGRTMIN
receving signal SIGRTMIN
receving signal SIGRTMIN
receving signal SIGRTMIN
receving signal SIGRTMIN
receving signal SIGRTMIN
receving signal SIGRTMIN
receving signal SIGRTMIN
receving signal SIGRTMIN
receving signal SIGUSR1
SIGUSR1: 1
SIGRTMIN: 20
^^^^^^^^^^^^^^^^^^^^^^^^^^^
^^^^^^^ Hello World ^^^^^^^
^^^^^^^ I'm LeoK ^^^^^^^
^^^^^^^^^^^^^^^^^^^^^^^^^^^

另一个例子:

先是recv程序:

#include <unistd.h>
#include <sys/stat.h>
#include <sys/wait.h>
#include <sys/types.h>
#include <fcntl.h> #include <stdlib.h>
#include <stdio.h>
#include <errno.h>
#include <string.h>
#include <signal.h> #define ERR_EXIT(m) \
do \
{ \
perror(m); \
exit(EXIT_FAILURE); \
} while(0) void handler(int); int main(int argc, char *argv[])
{
struct sigaction act;
act.sa_handler = handler;
sigemptyset(&act.sa_mask);
act.sa_flags = 0; sigset_t s;
sigemptyset(&s);
sigaddset(&s, SIGINT);
sigaddset(&s, SIGRTMIN);
sigprocmask(SIG_BLOCK, &s, NULL);
if (sigaction(SIGINT, &act, NULL) < 0)
ERR_EXIT("sigaction error"); if (sigaction(SIGRTMIN, &act, NULL) < 0)
ERR_EXIT("sigaction error"); if (sigaction(SIGUSR1, &act, NULL) < 0)
ERR_EXIT("sigaction error");
for (;;)
pause();
return 0;
} void handler(int sig)
{
if (sig == SIGINT || sig == SIGRTMIN)
printf("recv a sig=%d\n", sig);
else if (sig == SIGUSR1)
{
sigset_t s;
sigemptyset(&s);
sigaddset(&s, SIGINT);
sigaddset(&s, SIGRTMIN);
sigprocmask(SIG_UNBLOCK, &s, NULL);
}
}

在主函数中将SIGINT和SIGRTMIN信号加入信号屏蔽字,只有当接收到SIGUSR1信号时才对前面两个信号unblock。需要注意的是:如果在信号处理函数中对某个信号进行解除阻塞时,则只是将pending位清0,让此信号递达一次(同个实时信号产生多次进行排队都会抵达),但不会将block位清0,即再次产生此信号时还是会被阻塞,处于未决状态。
接着是send程序:

#include<sys/types.h>
#include<sys/stat.h>
#include<unistd.h>
#include<fcntl.h>
#include<stdio.h>
#include<stdlib.h>
#include<errno.h>
#include<string.h>
#include<signal.h> #define ERR_EXIT(m) \
do { \
perror(m); \
exit(EXIT_FAILURE); \
} while(0) int main(int argc, char *argv[])
{
if (argc != 2)
{
fprintf(stderr, "Usage %s pid\n", argv[0]);
exit(EXIT_FAILURE);
} pid_t pid = atoi(argv[1]); //字符串转换为整数
union sigval val;
val.sival_int = 100;
sigqueue(pid, SIGINT, val); // 不可靠信号不会排队,即会丢失
sigqueue(pid, SIGINT, val);
sigqueue(pid, SIGINT, val);
sigqueue(pid, SIGRTMIN, val); //实时信号会排队,即不会丢失
sigqueue(pid, SIGRTMIN, val);
sigqueue(pid, SIGRTMIN, val);
sleep(3);
kill(pid, SIGUSR1); return 0; }

先是运行recv程序:

huangcheng@ubuntu:~$ ./sigrtime_recv2

接着ps出recv进程的pid,运行send程序:

huangcheng@ubuntu:~$ ./sigrtime_send 3251

在send程序中连续各发送了SIGINT和SIGRTMIN信号3次,接着睡眠3s后使用kill函数发送SIGUSR1信号给recv进程,此时recv进程会输出如下:

recv a sig=34
recv a sig=34
recv a sig=34
recv a sig=2

即实时信号支持排队,3个信号都接收到了,而不可靠信号不支持排队,只保留一个信号。

UNIX环境高级编程——可靠信号与不可靠信号的更多相关文章

  1. (八) 一起学 Unix 环境高级编程 (APUE) 之 信号

    . . . . . 目录 (一) 一起学 Unix 环境高级编程 (APUE) 之 标准IO (二) 一起学 Unix 环境高级编程 (APUE) 之 文件 IO (三) 一起学 Unix 环境高级编 ...

  2. (十三) [终篇] 一起学 Unix 环境高级编程 (APUE) 之 网络 IPC:套接字

    . . . . . 目录 (一) 一起学 Unix 环境高级编程 (APUE) 之 标准IO (二) 一起学 Unix 环境高级编程 (APUE) 之 文件 IO (三) 一起学 Unix 环境高级编 ...

  3. Unix 环境高级编程 (APUE) 之 网络 IPC:套接字

    一起学 Unix 环境高级编程 (APUE) 之 网络 IPC:套接字 . . . . . 目录 (一) 一起学 Unix 环境高级编程 (APUE) 之 标准IO (二) 一起学 Unix 环境高级 ...

  4. 《UNIX环境高级编程(第3版)》

    <UNIX环境高级编程(第3版)> 基本信息 原书名:Advanced Programming in the UNIX Environment (3rd Edition) (Addison ...

  5. (一) 一起学 Unix 环境高级编程 (APUE) 之 标准IO

    . . . . . 目录 (一) 一起学 Unix 环境高级编程 (APUE) 之 标准IO (二) 一起学 Unix 环境高级编程 (APUE) 之 文件 IO (三) 一起学 Unix 环境高级编 ...

  6. (二) 一起学 Unix 环境高级编程 (APUE) 之 文件 IO

    . . . . . 目录 (一) 一起学 Unix 环境高级编程 (APUE) 之 标准IO (二) 一起学 Unix 环境高级编程 (APUE) 之 文件 IO (三) 一起学 Unix 环境高级编 ...

  7. (三) 一起学 Unix 环境高级编程 (APUE) 之 文件和目录

    . . . . . 目录 (一) 一起学 Unix 环境高级编程 (APUE) 之 标准IO (二) 一起学 Unix 环境高级编程 (APUE) 之 文件 IO (三) 一起学 Unix 环境高级编 ...

  8. (四) 一起学 Unix 环境高级编程(APUE) 之 系统数据文件和信息

    . . . . . 目录 (一) 一起学 Unix 环境高级编程 (APUE) 之 标准IO (二) 一起学 Unix 环境高级编程 (APUE) 之 文件 IO (三) 一起学 Unix 环境高级编 ...

  9. (五) 一起学 Unix 环境高级编程 (APUE) 之 进程环境

    . . . . . 目录 (一) 一起学 Unix 环境高级编程 (APUE) 之 标准IO (二) 一起学 Unix 环境高级编程 (APUE) 之 文件 IO (三) 一起学 Unix 环境高级编 ...

随机推荐

  1. python四则运算

    源代码已上传至Github,https://github.com/chaigee/arithmetic,中的python_ari.py文件 题目: (1)能自动生成小学四则运算题目,并且不能出现负数: ...

  2. MySQL使用判断

    1.case语法 在第一个方案的返回结果中, value=compare-value.而第二个方案的返回结果是第一种情况的真实结果.如果没有匹配的结果值,则返回结果为ELSE后的结果,如果没有ELSE ...

  3. http协议无状态中的 "状态" 到底指的是什么?!

    引子: 最近在好好了解http,发现对介绍http的第一句话[http协议是无状态的,无连接的]就无法理解了:无状态的[状态]到底指的是什么?! 找了很多资料不仅没有发现有一针见血正面回答这个问题的, ...

  4. Docker学习系列(三)Docker搭建gitlab的两种方式

    一.直接下载docker-ce 1.拉取gitlab/gitlab-ce Randy:~ Randy$ docker pull gitlab/gitlab-ce Using default tag: ...

  5. Docker 列出镜像

    使用 docker images 显示本地已有的镜像. $ sudo docker images REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE ubuntu ...

  6. Android Studio精彩案例(四)《DrawerLayout使用详解仿网易新闻客户端侧边栏 》

    转载本专栏文章,请注明出处,尊重原创 .文章博客地址:道龙的博客 为了提高兴趣,咱们开头先看看最终要实现什么样的效果: 侧拉菜单在Android应用中非常常见,它的实现方式太多了,今天我们就说说使用G ...

  7. JavaScript DOM详解

    欢迎转载,转载请标明出处: http://blog.csdn.net/johnny901114/article/details/52727448 本文出自:[余志强的博客] 一.DOM概述 D: Do ...

  8. J2EE进阶(十五)MyEclipse反向工程实现从数据库反向生成实体类之Hibernate方式

    J2EE进阶(十五)MyEclipse反向工程实现从数据库反向生成实体类之Hibernate方式   反向工程又称逆向工程.   开发项目涉及到的表太多,一个一个的写JAVA实体类很是费事.MyEcl ...

  9. Swagger API接口管理

    介绍         Swagger API框架,用于管理项目中API接口,属当前最流行的API接口管理工具. Swagger功能强大,UI界面漂亮,支持在线测试等!         Swagger包 ...

  10. 递归的神奇之处在于你会发现问题竟然解决了--解N皇后谜题有感

    看sicp看到8皇后谜题, 突然兴致来了,尝试独立解决(scheme代码的好处在于,即使你瞟了眼答案, 也不会有任何收获, 除了知道那儿有一坨神秘的括号和英文字符外但Python代码就不同了),成功了 ...