性能相关

在编写爬虫时,性能的消耗主要在IO请求中,当单进程单线程模式下请求URL时必然会引起等待,从而使得请求整体变慢。

import requests

def fetch_async(url):
response = requests.get(url)
return response url_list = ['http://www.github.com', 'http://www.bing.com'] for url in url_list:
fetch_async(url)

1.同步执行

from concurrent.futures import ThreadPoolExecutor
import requests def fetch_async(url):
response = requests.get(url)
return response url_list = ['http://www.github.com', 'http://www.bing.com']
pool = ThreadPoolExecutor(5)
for url in url_list:
pool.submit(fetch_async, url)
pool.shutdown(wait=True)

2.多线程执行

from concurrent.futures import ThreadPoolExecutor
import requests def fetch_async(url):
response = requests.get(url)
return response def callback(future):
print(future.result()) url_list = ['http://www.github.com', 'http://www.bing.com']
pool = ThreadPoolExecutor(5)
for url in url_list:
v = pool.submit(fetch_async, url)
v.add_done_callback(callback)
pool.shutdown(wait=True)

2.多线程+回调函数执行

from concurrent.futures import ProcessPoolExecutor
import requests def fetch_async(url):
response = requests.get(url)
return response url_list = ['http://www.github.com', 'http://www.bing.com']
pool = ProcessPoolExecutor(5)
for url in url_list:
pool.submit(fetch_async, url)
pool.shutdown(wait=True)

3.多进程执行

from concurrent.futures import ProcessPoolExecutor
import requests def fetch_async(url):
response = requests.get(url)
return response def callback(future):
print(future.result()) url_list = ['http://www.github.com', 'http://www.bing.com']
pool = ProcessPoolExecutor(5)
for url in url_list:
v = pool.submit(fetch_async, url)
v.add_done_callback(callback)
pool.shutdown(wait=True)

3.多进程+回调函数执行

通过上述代码均可以完成对请求性能的提高,对于多线程和多进行的缺点是在IO阻塞时会造成了线程和进程的浪费,所以异步IO回事首选:

import asyncio

@asyncio.coroutine
def func1():
print('before...func1......')
yield from asyncio.sleep(5)
print('end...func1......') tasks = [func1(), func1()] loop = asyncio.get_event_loop()
loop.run_until_complete(asyncio.gather(*tasks))
loop.close()

1.asyncio示例1

@asyncio.coroutine
def fetch_async(host, url='/'):
print(host, url)
reader, writer = yield from asyncio.open_connection(host, 80) request_header_content = """GET %s HTTP/1.0\r\nHost: %s\r\n\r\n""" % (url, host,)
request_header_content = bytes(request_header_content, encoding='utf-8') writer.write(request_header_content)
yield from writer.drain()
text = yield from reader.read()
print(host, url, text)
writer.close() tasks = [
fetch_async('www.cnblogs.com', '/wupeiqi/'),
fetch_async('dig.chouti.com', '/pic/show?nid=4073644713430508&lid=10273091')
] loop = asyncio.get_event_loop()
results = loop.run_until_complete(asyncio.gather(*tasks))
loop.close()

1.asyncio示例2

import aiohttp
import asyncio @asyncio.coroutine
def fetch_async(url):
print(url)
response = yield from aiohttp.request('GET', url)
# data = yield from response.read()
# print(url, data)
print(url, response)
response.close() tasks = [fetch_async('http://www.google.com/'), fetch_async('http://www.chouti.com/')] event_loop = asyncio.get_event_loop()
results = event_loop.run_until_complete(asyncio.gather(*tasks))
event_loop.close()

2.asyncio + aiohttp

import asyncio
import requests @asyncio.coroutine
def fetch_async(func, *args):
loop = asyncio.get_event_loop()
future = loop.run_in_executor(None, func, *args)
response = yield from future
print(response.url, response.content) tasks = [
fetch_async(requests.get, 'http://www.cnblogs.com/wupeiqi/'),
fetch_async(requests.get, 'http://dig.chouti.com/pic/show?nid=4073644713430508&lid=10273091')
] loop = asyncio.get_event_loop()
results = loop.run_until_complete(asyncio.gather(*tasks))
loop.close()

3.asyncio + requests

import gevent

import requests
from gevent import monkey monkey.patch_all() def fetch_async(method, url, req_kwargs):
print(method, url, req_kwargs)
response = requests.request(method=method, url=url, **req_kwargs)
print(response.url, response.content) # ##### 发送请求 #####
gevent.joinall([
gevent.spawn(fetch_async, method='get', url='https://www.python.org/', req_kwargs={}),
gevent.spawn(fetch_async, method='get', url='https://www.yahoo.com/', req_kwargs={}),
gevent.spawn(fetch_async, method='get', url='https://github.com/', req_kwargs={}),
]) # ##### 发送请求(协程池控制最大协程数量) #####
# from gevent.pool import Pool
# pool = Pool(None)
# gevent.joinall([
# pool.spawn(fetch_async, method='get', url='https://www.python.org/', req_kwargs={}),
# pool.spawn(fetch_async, method='get', url='https://www.yahoo.com/', req_kwargs={}),
# pool.spawn(fetch_async, method='get', url='https://www.github.com/', req_kwargs={}),
# ])

4.gevent + requests

import grequests

request_list = [
grequests.get('http://httpbin.org/delay/1', timeout=0.001),
grequests.get('http://fakedomain/'),
grequests.get('http://httpbin.org/status/500')
] # ##### 执行并获取响应列表 #####
# response_list = grequests.map(request_list)
# print(response_list) # ##### 执行并获取响应列表(处理异常) #####
# def exception_handler(request, exception):
# print(request,exception)
# print("Request failed") # response_list = grequests.map(request_list, exception_handler=exception_handler)
# print(response_list)

5.grequests

from twisted.web.client import getPage, defer
from twisted.internet import reactor def all_done(arg):
reactor.stop() def callback(contents):
print(contents) deferred_list = [] url_list = ['http://www.bing.com', 'http://www.baidu.com', ]
for url in url_list:
deferred = getPage(bytes(url, encoding='utf8'))
deferred.addCallback(callback)
deferred_list.append(deferred) dlist = defer.DeferredList(deferred_list)
dlist.addBoth(all_done) reactor.run()

6.Twisted示例

from tornado.httpclient import AsyncHTTPClient
from tornado.httpclient import HTTPRequest
from tornado import ioloop def handle_response(response):
"""
处理返回值内容(需要维护计数器,来停止IO循环),调用 ioloop.IOLoop.current().stop()
:param response:
:return:
"""
if response.error:
print("Error:", response.error)
else:
print(response.body) def func():
url_list = [
'http://www.baidu.com',
'http://www.bing.com',
]
for url in url_list:
print(url)
http_client = AsyncHTTPClient()
http_client.fetch(HTTPRequest(url), handle_response) ioloop.IOLoop.current().add_callback(func)
ioloop.IOLoop.current().start()

7.Tornado

from twisted.internet import reactor
from twisted.web.client import getPage
import urllib.parse def one_done(arg):
print(arg)
reactor.stop() post_data = urllib.parse.urlencode({'check_data': 'adf'})
post_data = bytes(post_data, encoding='utf8')
headers = {b'Content-Type': b'application/x-www-form-urlencoded'}
response = getPage(bytes('http://dig.chouti.com/login', encoding='utf8'),
method=bytes('POST', encoding='utf8'),
postdata=post_data,
cookies={},
headers=headers)
response.addBoth(one_done) reactor.run()

Twisted更多

以上均是Python内置以及第三方模块提供异步IO请求模块,使用简便大大提高效率,而对于异步IO请求的本质则是【非阻塞Socket】+【IO多路复用】:

import select
import socket
import time class AsyncTimeoutException(TimeoutError):
"""
请求超时异常类
""" def __init__(self, msg):
self.msg = msg
super(AsyncTimeoutException, self).__init__(msg) class HttpContext(object):
"""封装请求和相应的基本数据""" def __init__(self, sock, host, port, method, url, data, callback, timeout=5):
"""
sock: 请求的客户端socket对象
host: 请求的主机名
port: 请求的端口
port: 请求的端口
method: 请求方式
url: 请求的URL
data: 请求时请求体中的数据
callback: 请求完成后的回调函数
timeout: 请求的超时时间
"""
self.sock = sock
self.callback = callback
self.host = host
self.port = port
self.method = method
self.url = url
self.data = data self.timeout = timeout self.__start_time = time.time()
self.__buffer = [] def is_timeout(self):
"""当前请求是否已经超时"""
current_time = time.time()
if (self.__start_time + self.timeout) < current_time:
return True def fileno(self):
"""请求sockect对象的文件描述符,用于select监听"""
return self.sock.fileno() def write(self, data):
"""在buffer中写入响应内容"""
self.__buffer.append(data) def finish(self, exc=None):
"""在buffer中写入响应内容完成,执行请求的回调函数"""
if not exc:
response = b''.join(self.__buffer)
self.callback(self, response, exc)
else:
self.callback(self, None, exc) def send_request_data(self):
content = """%s %s HTTP/1.0\r\nHost: %s\r\n\r\n%s""" % (
self.method.upper(), self.url, self.host, self.data,) return content.encode(encoding='utf8') class AsyncRequest(object):
def __init__(self):
self.fds = []
self.connections = [] def add_request(self, host, port, method, url, data, callback, timeout):
"""创建一个要请求"""
client = socket.socket()
client.setblocking(False)
try:
client.connect((host, port))
except BlockingIOError as e:
pass
# print('已经向远程发送连接的请求')
req = HttpContext(client, host, port, method, url, data, callback, timeout)
self.connections.append(req)
self.fds.append(req) def check_conn_timeout(self):
"""检查所有的请求,是否有已经连接超时,如果有则终止"""
timeout_list = []
for context in self.connections:
if context.is_timeout():
timeout_list.append(context)
for context in timeout_list:
context.finish(AsyncTimeoutException('请求超时'))
self.fds.remove(context)
self.connections.remove(context) def running(self):
"""事件循环,用于检测请求的socket是否已经就绪,从而执行相关操作"""
while True:
r, w, e = select.select(self.fds, self.connections, self.fds, 0.05) if not self.fds:
return for context in r:
sock = context.sock
while True:
try:
data = sock.recv(8096)
if not data:
self.fds.remove(context)
context.finish()
break
else:
context.write(data)
except BlockingIOError as e:
break
except TimeoutError as e:
self.fds.remove(context)
self.connections.remove(context)
context.finish(e)
break for context in w:
# 已经连接成功远程服务器,开始向远程发送请求数据
if context in self.fds:
data = context.send_request_data()
context.sock.sendall(data)
self.connections.remove(context) self.check_conn_timeout() if __name__ == '__main__':
def callback_func(context, response, ex):
"""
:param context: HttpContext对象,内部封装了请求相关信息
:param response: 请求响应内容
:param ex: 是否出现异常(如果有异常则值为异常对象;否则值为None)
:return:
"""
print(context, response, ex) obj = AsyncRequest()
url_list = [
{'host': 'www.google.com', 'port': 80, 'method': 'GET', 'url': '/', 'data': '', 'timeout': 5,
'callback': callback_func},
{'host': 'www.baidu.com', 'port': 80, 'method': 'GET', 'url': '/', 'data': '', 'timeout': 5,
'callback': callback_func},
{'host': 'www.bing.com', 'port': 80, 'method': 'GET', 'url': '/', 'data': '', 'timeout': 5,
'callback': callback_func},
]
for item in url_list:
print(item)
obj.add_request(**item) obj.running()

史上最牛逼的异步IO模

Python 爬虫性能相关的更多相关文章

  1. python爬虫selenium相关

    首先上很好用的selenium中文文档,基本上所有问题都能通过阅读此文档解决.可惜好像没找到翻译者名称. https://python-selenium-zh.readthedocs.io/zh_CN ...

  2. 【转】Python爬虫(5)_性能相关

    爬虫性能相关 一 背景知识 爬虫的本质就是一个socket客户端与服务端的通信过程,如果我们有多个url待爬取,采用串行的方式执行,只能等待爬取一个结束后才能继续下一个,效率会非常低. 需要强调的是: ...

  3. python爬虫起步...开发环境搭建,最简单的方式

    研究一门编程语言,一般第一步就是配置安装部署相关的编程环境.我认为啊,在学习的初期,大家不是十分了解相关的环境,或者是jar包,python模块等的相关内容,就不需要花费大量的时间去研究如何去安装它. ...

  4. 最全Python爬虫总结(转载)

    [html] view plain copy 最近总是要爬取一些东西,索性就把Python爬虫的相关内容都总结起来了,自己多动手还是好. (1)普通的内容爬取(2)保存爬取的图片/视频和文件和网页(3 ...

  5. 沉淀,再出发:python爬虫的再次思考

    沉淀,再出发:python爬虫的再次思考 一.前言    之前笔者就写过python爬虫的相关文档,不过当时因为知识所限,理解和掌握的东西都非常的少,并且使用更多的是python2.x的版本的功能,现 ...

  6. (Python爬虫02) 制定爬虫的学习计划了

    公司清退是件很让人郁闷的事情,精,气,神 都会受到影响.焦虑的心态,涣散的眼神, 无所适从的若无其事,人周茶凉的快速交接,各种担忧....平静的面孔波涛汹涌的心.... 认识聊天中满满的套路...还有 ...

  7. python爬虫之性能相关

    性能相关 在编写爬虫时,性能的消耗主要在IO请求中,当单进程单线程模式下请求URL时必然会引起等待,从而使得请求整体变慢. import requests def fetch_async(url): ...

  8. python爬虫主要就是五个模块:爬虫启动入口模块,URL管理器存放已经爬虫的URL和待爬虫URL列表,html下载器,html解析器,html输出器 同时可以掌握到urllib2的使用、bs4(BeautifulSoup)页面解析器、re正则表达式、urlparse、python基础知识回顾(set集合操作)等相关内容。

    本次python爬虫百步百科,里面详细分析了爬虫的步骤,对每一步代码都有详细的注释说明,可通过本案例掌握python爬虫的特点: 1.爬虫调度入口(crawler_main.py) # coding: ...

  9. Mac os 下 python爬虫相关的库和软件的安装

      由于最近正在放暑假,所以就自己开始学习python中有关爬虫的技术,因为发现其中需要安装许多库与软件所以就在这里记录一下以避免大家在安装时遇到一些不必要的坑. 一. 相关软件的安装:   1. h ...

随机推荐

  1. 一名Java架构师分享自己的从业心得,从码农到架构师我用了八年

    工作了挺久,发现有个挺有意思的现象,从程序员.高级程序员,到现在挂着架构师.专家之类的头衔,伴随着技术和能力的提高,想不明白的事情反而越来越多了. 这些疑问有些来自于跟小伙伴的交流,有些是我的自问自答 ...

  2. workflow--相关笔记

    转自http://blog.csdn.net/u014682573/article/details/29922093 1. 工作流技术 工作流(Workflow) 定义:工作流就是将一组任务组织起来, ...

  3. 【Django】 视图层说明

    [Django视图层] 视图层的主要工作是衔接HTTP请求,Python程序和HTML模板,使他们能够有机互相合作从模型层lou到数据并且反馈.说到视图层的工作就有以下几个方面要说 ■ URL映射 对 ...

  4. 【CSS】 CSS 定位

    css 定位和浮动 *******本章大量内容copy自w3school********* 定位对于html界面还是很重要的,因为定位会直接影响到用户的视图.对于css而言,定位也比较灵活. 浮动是一 ...

  5. nginx日志切割配置

    编辑虚拟主机文件 /etc/nginx/conf.d/default.conf  在server段添加如下配置 if ($time_iso8601 ~ "^(\d{4})-(\d{2})-( ...

  6. python(练习实例)

    Python 练习实例1 题目:有四个数字:1.2.3.4,能组成多少个互不相同且无重复数字的三位数?各是多少? 我的代码:python 3+ #2017-7-20 list_h = [1,2,3,4 ...

  7. java基础笔记(8)----接口

    接口 是特殊的抽象类,纯抽象类---所有方法都是抽象方法 接口和抽象类的区别: 相同点: 编译后,会分别生成对应的.class文件 都不能创建对象(实例化),但是可以生成引用(使用多态) 不同点: 抽 ...

  8. Mysql 一次性备份导出/导入恢复所有数据库

    有木有遇到过这种情况?电脑或者服务器需要重装系统?可是你电脑上存着n多个网站的数据库,怎么办?把数据库文件夹拷贝出来,重装系统之后再拷回去?如果你使用了InnoDB引擎,恐怕那样做会出麻烦的,一个一个 ...

  9. 走进webpack(3)-- 小结

    写这一系列的文章,本意是想要梳理一下自己凌乱的webpack知识,只是使用过vue-cli,修改过其中的一部分代码,但是对于一个简单项目从0开始搭建webpack的流程和其中的依赖并不是十分清楚.所以 ...

  10. drbd(二):配置和使用

    本文目录:1.drbd配置文件2.创建metadata区并计算metadata区的大小3.启动drbd4.实现drbd主从同步5.数据同步和主从角色切换6.drbd脑裂后的解决办法7.drbd多卷组配 ...