1、引言

HTTPS(全称: Hypertext Transfer Protocol Secure,超文本传输安全协议),是以安全为目标的HTTP通道,简单讲是HTTP的安全版。本文,就来深入介绍下其原理。

补充:限于篇幅,本文对于https的相关技术要点的介绍尽量简明扼要,如想要详细了解HTTPS的方方面面,请阅读《即时通讯安全篇(七):如果这样来理解HTTPS,一篇就够了》。

(本文同步发布于:http://www.52im.net/thread-2446-1-1.html

2、相关文章

即时通讯安全篇(七):如果这样来理解HTTPS,一篇就够了

一文读懂Https的安全性原理、数字证书、单项认证、双项认证等

HTTPS时代已来,打算更新你的HTTP服务了吗?

苹果即将强制实施 ATS,你的APP准备好切换到HTTPS了吗?

一分钟理解 HTTPS 到底解决了什么问题

3、为什么需要https

原因其实很简单:就是因为http不安全。

 

当我们往服务器发送比较隐私的数据(比如说你的银行卡,身份证)时,如果使用http进行通信。那么安全性将得不到保障。

首先数据在传输的过程中,数据可能被中间人抓包拿到,那么数据就会被中间人窃取。

其次数据被中间人拿到后,中间人可能对数据进行修改或者替换,然后发往服务器。

最后服务器收到数据后,也无法确定数据有没有被修改或替换,当然,如果服务器也无法判断数据就真的是来源于客户端。

总结下来,http存在三个弊端:

1)无法保证消息的保密性;

2)无法保证消息的完整性和准确性;

3)无法保证消息来源的可靠性。

https就是为了解决上述问题应运而生的。

4、基本概念:加密技术、数字证书和数字签名

为了解决http中存在的问题,https采用了一些加解密,数字证书,数字签名的技术来实现。下面先介绍一下这些技术的基本概念。

4.1 对称加密与非对称加密

为了保证消息的保密性,就需要用到加密和解密。加解密算法目前主流的分为对称加密和非对称加密。

(4.1.1)对称加密(共享密匙加密):

客户端和服务器公用一个密匙用来对消息加解密,这种方式称为对称加密。客户端和服务器约定好一个加密的密匙。客户端在发消息前用该密匙对消息加密,发送给服务器后,服务器再用该密匙进行解密拿到消息。

 

对称加密的优点:对称加密解决了http中消息保密性的问题

对称加密的缺点:对称加密虽然保证了消息保密性,但是因为客户端和服务器共享一个密匙,这样就使得密匙特别容易泄露。

因为密匙泄露风险较高,所以很难保证消息来源的可靠性、消息的完整性和准确性。

 

(4.1.2)非对称加密(公有密匙加密):

既然对称加密中,密匙那么容易泄露,那么我们可以采用一种非对称加密的方式来解决。

采用非对称加密时,客户端和服务端均拥有一个公有密匙和一个私有密匙。公有密匙可以对外暴露,而私有密匙只有自己可见。

使用公有密匙加密的消息,只有对应的私有密匙才能解开。反过来,使用私有密匙加密的消息,只有公有密匙才能解开。这样客户端在发送消息前,先用服务器的公匙对消息进行加密,服务器收到后再用自己的私匙进行解密。

 

非对称加密的优点:

1)非对称加密采用公有密匙和私有密匙的方式,解决了http中消息保密性问题,而且使得私有密匙泄露的风险降低;

2)因为公匙加密的消息只有对应的私匙才能解开,所以较大程度上保证了消息的来源性以及消息的准确性和完整性。

非对称加密的缺点:

1)非对称加密时需要使用到接收方的公匙对消息进行加密,但是公匙不是保密的,任何人都可以拿到,中间人也可以。那么中间人可以做两件事,第一件是中间人可以在客户端与服务器交换公匙的时候,将客户端的公匙替换成自己的。这样服务器拿到的公匙将不是客户端的,而是服务器的。服务器也无法判断公匙来源的正确性。第二件是中间人可以不替换公匙,但是他可以截获客户端发来的消息,然后篡改,然后用服务器的公匙加密再发往服务器,服务器将收到错误的消息;

2)非对称加密的性能相对对称加密来说会慢上几倍甚至几百倍,比较消耗系统资源。正是因为如此,https将两种加密结合了起来。

 
 

4.2 数字证书与数字签名

为了解决非对称加密中公匙来源的不安全性。我们可以使用数字证书和数字签名来解决。

(4.2.1)数字证书的申请:

在现实中,有一些专门的权威机构用来颁发数字证书,我们称这些机构为认证中心(CA Certificate Authority)。

我们(服务器)可以向这些CA来申请数字证书。

申请的过程大致是:

1)自己本地先生成一对密匙,然后拿着自己的公匙以及其他信息(比如说企业名称啊什么的)去CA申请数字证书。

2)CA在拿到这些信息后,会选择一种单向Hash算法(比如说常见的MD5)对这些信息进行加密,加密之后的东西我们称之为摘要:

单向Hash算法有一种特点就是单向不可逆的,只要原始内容有一点变化,加密后的数据都将会是千差万别(当然也有很小的可能性会重复,有兴趣的小伙伴鸽巢原理了解一下),这样就防止了信息被篡改。

3)生成摘要后还不算完,CA还会用自己的私匙对摘要进行加密,摘要加密后的数据我们称之为数字签名。

4)最后,CA将会把我们的申请信息(包含服务器的公匙)和数字签名整合在一起,由此而生成数字证书。

5)然后CA将数字证书传递给我们。

(4.2.2)数字证书怎么起作用:

服务器在获取到数字证书后,服务器会将数字证书发送给客户端,客户端就需要用CA的公匙解密数字证书并验证数字证书的合法性。那我们如何能拿到CA的公匙呢?我们的电脑和浏览器中已经内置了一部分权威机构的根证书,这些根证书中包含了CA的公匙。

 

之所以是根证书,是因为现实生活中,认证中心是分层级的,也就是说有顶级认证中心,也有下面的各个子级的认证中心,是一个树状结构,计算机中内置的是最顶级机构的根证书,不过不用担心,根证书的公匙在子级也是适用的。

客户端用CA的公匙解密数字证书,如果解密成功则说明证书来源于合法的认证机构。解密成功后,客户端就拿到了摘要。

此时,客户端会按照和CA一样的Hash算法将申请信息生成一份摘要,并和解密出来的那份做对比,如果相同则说明内容完整,没有被篡改。最后,客户端安全的从证书中拿到服务器的公匙就可以和服务器进行安全的非对称加密通信了。服务器想获得客户端的公匙也可以通过相同方式。

下图用图解的方式说明一般的证书申请及其使用过程:

 

5、https的工作原理

通过上面的学习,我们了解对称加密与非对称加密的特点和优缺点,以及数字证书的作用。https没有采用单一的技术去实现,而是根据他们的特点,充分的将这些技术整合进去,以达到性能与安全最大化。这套整合的技术我们称之为SSL(Secure Scoket Layer 安全套接层)。

所以https并非是一项新的协议,它只是在http上披了一层加密的外壳。

 

先看一下https连接的建立流程图:

 

如上图所,这里把https连接建立到断开分为6个阶段,12过程。

下面将对12个过程一 一做解释:

1)客户端通过发送Client Hello报文开始SSL通信。报文中包含客户端支持的SSL的指定版本、加密组件(Cipher Suite)列表(所使用的加密算法及密匙长度等);

2)服务器可进行SSL通信时,会以Server Hello报文作为应答。和客户端一样,在报文中包含SSL版本以及加密组件。服务器的加密组件内容时从接收到的客户端加密组件内筛选出来的;

3)服务器发送证书报文。报文中包含公开密匙证书;

4)最后服务器发送Server Hello Done报文通知客户端,最初阶段的SSL握手协商部分结束;

5)SSL第一次握手结束之后,客户端以Client Key Exchange报文作为回应。报文包含通信加密中使用的一种被称为Pre-master secret的随机密码串。该报文已用步骤3中的公开密匙进行加密;

6)接着客户端继续发送Change Cipher Spec报文。该报文会提示服务器,在此报文之后的通信会采用Pre-master secret密匙加密;

7)客户端发送Finished报文。该报文包含连接至今全部报文的整体校验值。这次握手协商是否能够成功,要以服务器是否能够正确解密该报文作为判定标准;

8)服务器同样发送Change Cipher Spec报文;

9)服务器同样发送Finished报文;

10)服务器和客户端的Finished报文交换完毕之后,SSL连接就算建立完成。当然,通信会收到SSL的保护。从此处开始进行应用层协议的通信,即发送HTTP请求;

11)应用层协议通信,即发送HTTP相应;

12)最后由客户端断开连接。断开连接时,发送close_notify报文。上图做了一些省略,这步之后再发送TCP FIN报文来关闭与TCP的通信。

另外,在以上流程图中,应用层发送数据时会附加一种叫做MAC(Message Authentication Code)的报文摘要。MAC能够查知报文是否遭到篡改,从而保证报文的完整性。

下面再用图解来形象的说明一下,此图比上面数字证书的图更加的详细一些(图片来源于《图解HTTP》):

 

经过上面的介绍,我们可以看出https先是利用数字证书保证服务器端的公匙可以安全无误的到达客户端。然后再用非对称加密安全的传递共享密匙,最后用共享密匙安全的交换数据。

6、一定要用https吗?

https那么的安全,是不是我们在什么场景下都要去使用https进行通信呢?答案是否定的。

1)https虽然提供了消息安全传输的通道,但是每次消息的加解密十分耗时,消息系统资源。所以,除非在一些对安全性比较高的场景下,比如银行系统,购物系统中我们必须要使用https进行通信,其他一些对安全性要求不高的场景,我们其实没必要使用https。

2)使用https需要使用到数字证书,但是一般权威机构颁发的数字证书都是收费的,而且价格也是不菲的,所以对于一些个人网站特别是学生来讲,如果对安全性要求不高,也没必要使用https。

7、参考资料

[1] 通俗理解数字签名,数字证书和https

[2]一个故事讲完https

[3] 图解HTTP

附录:更多安全方面的文章

即时通讯安全篇(一):正确地理解和使用Android端加密算法

即时通讯安全篇(二):探讨组合加密算法在IM中的应用

即时通讯安全篇(三):常用加解密算法与通讯安全讲解

即时通讯安全篇(四):实例分析Android中密钥硬编码的风险

即时通讯安全篇(五):对称加密技术在Android平台上的应用实践

即时通讯安全篇(六):非对称加密技术的原理与应用实践

即时通讯安全篇(七):用JWT技术解决IM系统Socket长连接的身份认证痛点

传输层安全协议SSL/TLS的Java平台实现简介和Demo演示

理论联系实际:一套典型的IM通信协议设计详解(含安全层设计)

微信新一代通信安全解决方案:基于TLS1.3的MMTLS详解

来自阿里OpenIM:打造安全可靠即时通讯服务的技术实践分享

简述实时音视频聊天中端到端加密(E2EE)的工作原理

移动端安全通信的利器——端到端加密(E2EE)技术详解

Web端即时通讯安全:跨站点WebSocket劫持漏洞详解(含示例代码)

通俗易懂:一篇掌握即时通讯的消息传输安全原理

IM开发基础知识补课(四):正确理解HTTP短连接中的Cookie、Session和Token

快速读懂量子通信、量子加密技术

即时通讯安全篇(七):如果这样来理解HTTPS原理,一篇就够了

一分钟理解 HTTPS 到底解决了什么问题

一篇读懂HTTPS:加密原理、安全逻辑、数字证书等

>> 更多同类文章 ……

(本文同步发布于:http://www.52im.net/thread-2446-1-1.html

一篇读懂HTTPS:加密原理、安全逻辑、数字证书等的更多相关文章

  1. HTTPS加密原理(转)

    Header HTTP.HTTPS在我们日常开发中是经常会接触到的. 我们也都知道,一般 Android 应用开发,在请求 API 网络接口的时候,很多使用的都是 HTTP 协议:使用浏览器打开网页, ...

  2. 一张图读懂https加密协议

    搭建CA服务器和iis启用https:http://blog.csdn.net/dier4836/article/details/7719532 一张图读懂https加密协议 https是一种加密传输 ...

  3. HTTPS加密原理与过程

    HTTPS加密原理与过程 HTTP 超文本传输协议一种属于应用层的协议 缺点: 通信使用明文(不加密),内容可能会被窃听 不验证通信方的身份,因此有可能遭遇伪装 无法证明报文的完整性,所以有可能已遭篡 ...

  4. 转!!通俗理解数字加密,数字签名,数字证书和https

    原博文地址:https://www.jianshu.com/p/4932cb1499bf 前言 最近在开发关于PDF合同文档电子签章的功能,大概意思就是在一份PDF合同上签名,盖章,使其具有法律效应. ...

  5. 探究公钥、私钥、对称加密、非对称加密、hash加密、数字签名、数字证书、CA认证、https它们究竟是什么,它们分别解决了通信过程的哪些问题。

    一.准备 1. 角色:小白.美美.小黑. 2. 剧情:小白和美美在谈恋爱:小黑对美美求而不得.心生怨念,所以从中作梗. 3. 需求:小白要与美美需通过网络进行通信,联络感情,所以必须保证通信的安全性. ...

  6. .Net Core 发送https请求/.net core 调用数字证书 使用X509Certificate2

    .Net Core 发送https请求 .net core 调用数字证书 使用X509Certificate2 .NET下面的 .netfromwork使用和asp.net core下使用方式不一样 ...

  7. 一篇文章读懂HTTPS及其背后的加密原理

    HTTPS(全称: Hypertext Transfer Protocol Secure,超文本传输安全协议),是以安全为目标的HTTP通道,简单讲是HTTP的安全版.本文,就来深入介绍下其原理. 1 ...

  8. 一文读懂Https的安全性原理、数字证书、单项认证、双项认证等

    本文引用了作者Smily(博客:blog.csdn.net/qq_20521573)的文章内容,感谢无私分享. 1.前言 目前苹果公司已经强制iOS应用必须使用HTTPS协议开发(详见<苹果即将 ...

  9. HTTPS加密原理

    http(超文本传输协议) 一种属于应用层的协议 缺点: 通信使用明文(不加密),内容可能会被窃听 不验证通信方的身份,因此有可能遭遇伪装 无法证明报文的完整性,所以有可能已遭篡改 优点: 传输速度快 ...

随机推荐

  1. VirtualBox不能为虚拟电脑打开一个新任务——The VirtualBox kernel modules do not match this version of VirtualBox

    本文由荒原之梦原创,原文链接:http://zhaokaifeng.com/?p=608 一.问题产生的环境 物理机操作系统:Ubuntu 17.10 (Ubuntu版本查看命令: cat /etc/ ...

  2. Enabling Chrome Developer Tools inside Postman

    Chrome's Developer Tools are an indispensable part of the modern web development workflow. However, ...

  3. CMD命令锦集

    虽然随着计算机产业的发展,Windows 操作系统的应用越来越广泛,DOS 面临着被淘汰的命运,但是因为它运行安全.稳定,有的用户还在使用,所以一般Windows 的各种版本都与其兼容,用户可以在Wi ...

  4. 配置windbg遇到的问题

    这几天在学用windbg分析进程的PTE和PDE内容,不过在配置windbg的过程中就遇到了不少问题.以下是步骤,可供参考. 1. 下载windbg,建议选择32位的.然后去 http://www.m ...

  5. thinter中button按钮控件(三)

    button控件 简单的实现: import tkinter wuya = tkinter.Tk() wuya.title("wuya") wuya.geometry(" ...

  6. 用secureCRT连接虚拟机中的Ubuntu系统,出现“远程主机拒绝连接”错误

    因为我的Ubuntu中未安装ssh服务,终端下运行命令: sudo apt-get install openssh-server 之后重启一下sshd服务: sudo service sshd res ...

  7. Java注解Retention、Documented、Target的含义

    Retention注解 Retention(保留)注解说明,这种类型的注解会被保留到那个阶段. 有三个值: 1.RetentionPolicy.SOURCE -- 这种类型的Annotations只在 ...

  8. Mave手动安装jar包

    今天配置Maven项目时有一个相应的jdbc驱动jar包导不进去,就自己导入了. 首先在官网上下载该jar包,地址为http://mvnrepository.com/ 点击jar下载. 用maven命 ...

  9. noip2010 引水入城 bfs+贪心

    如果能够实现,每个河边的城市对应的控制区域一定是一条线段. 所以直接bfs每个河边的城市,贪心线段的右端点 #include<cstdio> #include<cstring> ...

  10. [Usaco2009 Jan]安全路经Travel BZOJ1576 Dijkstra+树链剖分+线段树

    分析: Dijkstra求最短路树,在最短路树上进行操作,详情可见上一篇博客:http://www.cnblogs.com/Winniechen/p/9042937.html 我觉得这个东西不压行写出 ...