题目描述

A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).

The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).

How many possible unique paths are there?

Above is a 3 x 7 grid. How many possible unique paths are there?

Note: m and n will be at most 100.

根据题意分析,我们得出一个重要的结论:
  机器人走到终点的所有路径 = 机器人走到1位置的所有路径 +机器人走到2位置的所有路径。
同理如果要求走到1位置的所有路径,只要求它上面和左面的所有路径之和。

 

再来看当被划红线的小方块作为终点时,都只有一条唯一的路径。

很明显我们可以用动态规划来解决这个问题。经过上面的分析后,可以列出状态转义方程:

dp[][j] =
dp[i][] =
dp[i][j] = dp[i - ][j] + dp[i][j - ]

代码如下:

class Solution {
public:
int uniquePaths(int m, int n) {
int dp[m][n];
for (int i = ; i < m; i++) {
dp[i][] = ;
}
for (int j = ; j < n; j++) {
dp[][j] = ;
}
for (int i = ; i < m; i++) {
for (int j = ; j < n; j++) {
dp[i][j] = dp[i - ][j] + dp[i][j - ];
}
}
return dp[m-][n-];
}
};

使用动态规划时间复杂度只需要O(m*n)。在求解最优化问题时,无非最常用的就是贪心和动态规划两种。在使用动态规划中,先对问题仔细分析,列出状态转移方程以及边界条件,接下来代码就是水到渠成的事情了。

Unique-paths (动态规划)的更多相关文章

  1. LEETCODE —— Unique Paths II [动态规划 Dynamic Programming]

    唯一路径问题II Unique Paths II Follow up for "Unique Paths": Now consider if some obstacles are ...

  2. [LeetCode] Unique Paths && Unique Paths II && Minimum Path Sum (动态规划之 Matrix DP )

    Unique Paths https://oj.leetcode.com/problems/unique-paths/ A robot is located at the top-left corne ...

  3. 动态规划小结 - 二维动态规划 - 时间复杂度 O(n*n)的棋盘型,题 [LeetCode] Minimum Path Sum,Unique Paths II,Edit Distance

    引言 二维动态规划中最常见的是棋盘型二维动态规划. 即 func(i, j) 往往只和 func(i-1, j-1), func(i-1, j) 以及 func(i, j-1) 有关 这种情况下,时间 ...

  4. Leetcode之动态规划(DP)专题-63. 不同路径 II(Unique Paths II)

    Leetcode之动态规划(DP)专题-63. 不同路径 II(Unique Paths II) 初级题目:Leetcode之动态规划(DP)专题-62. 不同路径(Unique Paths) 一个机 ...

  5. Leetcode之动态规划(DP)专题-62. 不同路径(Unique Paths)

    Leetcode之动态规划(DP)专题-62. 不同路径(Unique Paths) 一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” ). 机器人每次只能向下或者向 ...

  6. Leetcode 动态规划 Unique Paths

    本文为senlie原创.转载请保留此地址:http://blog.csdn.net/zhengsenlie Unique Paths Total Accepted: 17915 Total Submi ...

  7. LeetCode之“动态规划”:Minimum Path Sum && Unique Paths && Unique Paths II

    之所以将这三道题放在一起,是因为这三道题非常类似. 1. Minimum Path Sum 题目链接 题目要求: Given a m x n grid filled with non-negative ...

  8. 63. Unique Paths II(有障碍的路径 动态规划)

    Follow up for "Unique Paths": Now consider if some obstacles are added to the grids. How m ...

  9. 62. Unique Paths (走棋盘多少种不同的走法 动态规划)

    A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below). The ...

  10. [LeetCode] Unique Paths II 不同的路径之二

    Follow up for "Unique Paths": Now consider if some obstacles are added to the grids. How m ...

随机推荐

  1. ORA-00379 缓冲池 DEFAULT 中无法提供 32K 块大小的空闲缓冲区

    (一)问题 今天在使用Pl/sql developer查看表空间大小的时候,报错误:ORA-00379 缓冲池 DEFAULT 中无法提供 32K 块大小的空闲缓冲区,具体如下图: SQL> s ...

  2. 1-51单片机WIFI学习(开发板介绍)

    源码链接都在后面 前面的都是介绍单独的WIFI,没有和单片机结合起来,因为做项目很少会只用WIFI模块.大多数都是WIFI模块作为中转数据的桥梁,单片机负责 数据采集,控制等等,所以自己准备出一套51 ...

  3. HTTP与私有二进制协议之间的区别

    简单的文本协议.二进制协议 写网络程序躲不过协议,协议其实就是定义了消息的格式,以及消息是如何交换的.协议可简单可复杂,复杂精密如TCP协议,简单奔放如HTTP的协议.这里将我所接触到的协议稍微总结一 ...

  4. SQL查询语句练习

    最近在学习SQL嘛,所以各个地方找题目来练手,毕竟现在能离得开数据库么? Student(S#,Sname,Sage,Ssex) 学生表 Course(C#,Cname,T#) 课程表 SC(S#,C ...

  5. Nginx负载均衡(架构之路)

    [前言] 在大型网站中,负载均衡是有想当必要的.尤其是在同一时间访问量比较大的大型网站,例如网上商城,新闻等CMS系统,为了减轻单个服务器的处理压力,我们引进了负载均衡这一个概念,将一个服务器的压力分 ...

  6. C#制作ActiveX插件

    首先新建项目--->类库,取名:ActiveXDemo 右键项目属性:应用属性==>程序集信息=>使程序集Com可见, 生成==>输出==>为com互操作注册 新建接口类 ...

  7. Archaius 原理

    Archaius 原理 Archaius是什么? Archaius提供了动态修改配置的值的功能,在修改配置后,不需要重启应用服务.其核心思想就是轮询配置源,每一次迭代,检测配置是否更改,有更改重新更新 ...

  8. [Luogu1801] 黑匣子 - Treap

    Description Black Box是一种原始的数据库.它可以储存一个整数数组,还有一个特别的变量i.最开始的时候Black Box是空的.而i等于0.这个Black Box要处理一串命令. 命 ...

  9. Xshell与虚拟机不能正常连接

    1.发现Xshell与虚拟机下的两个CentOS都不能正常连接,在这些系统下采用ifconfig查询发现eth0都没有ip地址,进而想到可能是虚拟机的设置出了问题,后来又想到自己之前曾经尝试过设置VM ...

  10. @Select注解的情况下,重载的报错

    在编写代码的时候,我对查询这个方法进行了重载,这样调用的时候会根据参数的不同,进而去执行不同的操作,但是......问题来了.想法都是美好的,实际情况却不是我理想的状态.运行代码的时候他动了几下,然后 ...