hive-jdbc获取查询日志慢的问题发现与解决
1、问题描述:
公司的数据平台的HiveJdbc查询一直有一个问题,就是日志获取太慢了,有时候差不多和结果一起出来的,这就非常影响用户的体验,半天都没任何输出。另一个是Beeline客户端不一致,beeline客户端每次都能很快的获取日志。
这里首先我们普及一个经验就是第一批日志获取的快慢,非常影响用户体验。如果第一批日志来的快,用户可以确认任务已经开始跑了,MR的JobId也会返回。日志的示例如下:
INFO : Compiling command(queryId=app_20180412185224_ebd3d373-31bb-430b-9daf-44f01049a9d4): select count(*) from ods.team
INFO : Semantic Analysis Completed
INFO : Returning Hive schema: Schema(fieldSchemas:[FieldSchema(name:_c0, type:bigint, comment:null)], properties:null)
INFO : Completed compiling command(queryId=app_20180412185224_ebd3d373-31bb-430b-9daf-44f01049a9d4); Time taken: 0.057 seconds
INFO : Concurrency mode is disabled, not creating a lock manager
INFO : Executing command(queryId=app_20180412185224_ebd3d373-31bb-430b-9daf-44f01049a9d4): select count(*) from ods.team
INFO : Query ID = app_20180412185224_ebd3d373-31bb-430b-9daf-44f01049a9d4
INFO : Total jobs = 1
INFO : Launching Job 1 out of 1
INFO : Starting task [Stage-1:MAPRED] in serial mode
INFO : Number of reduce tasks determined at compile time: 1
INFO : In order to change the average load for a reducer (in bytes):
INFO : set hive.exec.reducers.bytes.per.reducer=<number>
INFO : In order to limit the maximum number of reducers:
INFO : set hive.exec.reducers.max=<number>
INFO : In order to set a constant number of reducers:
INFO : set mapreduce.job.reduces=<number>
INFO : number of splits:3
INFO : Submitting tokens for job: job_1523499276700_0219
hive-jdbc查询后端的流程(hive-jdbc版本2.1.0):
1、启动一个线程T1,T1用于阻塞获取结果,T1还用于启动日志获取线程T2
2、T2启动获取Hive的查询日志
详细的代码请看下面这个DEMO, T1就是main线程获取hive日志的结果,T2就是LogTask获取hive的查询日志
public class HiveJdbcQueryLog {
public static void main(String[] args) throws Exception {
Class.forName("org.apache.hive.jdbc.HiveDriver");
Connection connection = DriverManager.getConnection("jdbc:hive2://hive-server0:10000", "app", "");
HiveStatement stmt = (HiveStatement) connection.createStatement();
String sql = "select count(*) from table";
try {
Thread logThread = new Thread(new LogTask(stmt));
logThread.setDaemon(true);
logThread.start();
boolean hasResult = stmt.execute(sql);
logThread.interrupt();
if (hasResult) {
ResultSet resultSet = stmt.getResultSet();
ResultSetMetaData metaData = resultSet.getMetaData();
int colCount = metaData.getColumnCount();
List<String> res = Lists.newArrayList();
while (resultSet.next()) {
List<String> row = Lists.newArrayList();
for (int i = 1; i <= colCount; i++) {
row.add(resultSet.getString(i));
}
res.addAll(row);
}
System.out.println(JSON.toJSONString(res));
} else {
stmt.getUpdateCount();
}
} catch (Exception ex) {
ex.printStackTrace();
}finally {
stmt.close();
connection.close();
}
}
public static class LogTask implements Runnable {
private HiveStatement stmt;
public LogTask(HiveStatement stmt) {
this.stmt = stmt;
}
@Override
public void run() {
try {
while (stmt.hasMoreLogs()) {
try {
for (String line : stmt.getQueryLog(true, 1000)) {
System.out.println(line);
}
Thread.sleep(200);
} catch (SQLException e) {
e.printStackTrace();
}
}
} catch (Exception e) {
e.printStackTrace();
}
}
}
}
几个比较奇怪的现象:
1、在数据平台执行查询任务,有时候获取hive日志也能很快,但是大部分的时候都很慢
2、当我把DEMO里面的获取日志的线程,也就是上述的T2线程(LogTask),里面的Sleep去掉时,日志能比较快的返回。但是HiveServer2上的日志会被打爆,因为不Sleep会获取几十万次,HiveServer2容易宕机。
2个怀疑的点:
1)有可能是HiveServer2堵塞,负载高或者日志文件很大,read IO需要很长时间
2)网络问题,HiveJdbc和HiveServer2之间是使用Thrift通信的,有可能网络原因,导致很慢。
2、排查过程
排查过程可以说是非常曲折,刚开始中间试过打日志,用Greys看耗时等等,但是一直没什么结果,直到最近一次排查才有突破!!
1)首先比较比较快速的是在DP服务器上用Greys查看了HiveStatement.getQueryLog方法耗时,确认第一批日志获取有快有慢的现象,有的时候是5S左右就有返回,有的时候需要15-20S左右才有返回。结果如下:
// 一次很慢的日志获取的,结果出来了,日志才出来
`---+Tracing for : thread_name="Thread-78" thread_id=0x84;is_daemon=true;priority=5;
`---+[17331,17331ms]org.apache.hive.jdbc.HiveStatement:getQueryLog()
+---[0,0ms]org.apache.hive.jdbc.HiveStatement:checkConnection(@858)
+---[0,0ms]java.util.ArrayList:<init>(@864)
+---[0,0ms]org.apache.hive.jdbc.HiveStatement:getFetchOrientation(@868)
+---[0,0ms]org.apache.hive.service.rpc.thrift.TFetchResultsReq:<init>(@868)
+---[0,0ms]org.apache.hive.service.rpc.thrift.TFetchResultsReq:setFetchType(@870)
+---[17330,17330ms]org.apache.hive.service.rpc.thrift.TCLIService$Iface:FetchResults(@871)
+---[17330,0ms]org.apache.hive.service.rpc.thrift.TFetchResultsResp:getStatus(@872)
+---[17330,0ms]org.apache.hive.jdbc.Utils:verifySuccessWithInfo(@872)
+---[17330,0ms]org.apache.hive.service.rpc.thrift.TFetchResultsResp:getResults(@895)
+---[17330,0ms]org.apache.hive.jdbc.HiveConnection:getProtocol(@895)
+---[17330,0ms]org.apache.hive.service.cli.RowSetFactory:create(@895)
+---[17330,0ms]org.apache.hive.service.cli.RowSet:iterator(@896)
// 一次正常的日志获取,大概点击执行之后5s有了数据(5s大概是一次RPC耗时)
`---+Tracing for : thread_name="Thread-71" thread_id=0x79;is_daemon=true;priority=5;
`---+[4557,4557ms]org.apache.hive.jdbc.HiveStatement:getQueryLog()
+---[0,0ms]org.apache.hive.jdbc.HiveStatement:checkConnection(@858)
+---[0,0ms]java.util.ArrayList:<init>(@864)
+---[0,0ms]org.apache.hive.jdbc.HiveStatement:getFetchOrientation(@868)
+---[0,0ms]org.apache.hive.service.rpc.thrift.TFetchResultsReq:<init>(@868)
+---[0,0ms]org.apache.hive.service.rpc.thrift.TFetchResultsReq:setFetchType(@870)
+---[4554,4554ms]org.apache.hive.service.rpc.thrift.TCLIService$Iface:FetchResults(@871)
+---[4554,0ms]org.apache.hive.service.rpc.thrift.TFetchResultsResp:getStatus(@872)
+---[4554,0ms]org.apache.hive.jdbc.Utils:verifySuccessWithInfo(@872)
+---[4554,0ms]org.apache.hive.service.rpc.thrift.TFetchResultsResp:getResults(@895)
+---[4554,0ms]org.apache.hive.jdbc.HiveConnection:getProtocol(@895)
+---[4554,0ms]org.apache.hive.service.cli.RowSetFactory:create(@895)
+---[4555,0ms]org.apache.hive.service.cli.RowSet:iterator(@896)
在调用hive-jdbc的client端,用Greys查询看的耗时都在TCLIService$Iface:FetchResults方法里面。看到这个信息的时候,肯定第一反应是RPC获取结果耗时在HiveServer端,要么是在网络上。这就是上面我基本怀疑的2个点。 很可惜,这2个怀疑的点最后都被证明是错的!!!!
2)然后在HiveServer端和Client端,分别开起了tcpdump监听网络事件,然后在T2线程(Hive日志获取的线程)上也打上了queryLog,开始获取log的时间,第一次收到queryLog的时间等等。开始debug!!!
不得不说tcpdump日志需要比对时间非常麻烦,下面我就直接贴出来我整理的事件时间轴:
上图可以看出来,时间上HiveServer端收到FetchResults事件已经是19s之后了,更奇怪的是dp端通过tcpdump可以看到发出fetchResult事件也在19S之后了。所以基本排除了HiveServer的耗时操作的可能性,还有网络超时的可能性。
基本就可以确定了,就是Client端的hive-jdbc的问题,那么到底DP端这段时间干了什么事情,还没rpc请求就要耗时19S么????雷政富tm才12s啊!!
3、翻看hive-jdbc源码
HiveStatement和HiveConnection
// HiveStatement
public List<String> getQueryLog(boolean incremental, int fetchSize)
throws SQLException, ClosedOrCancelledStatementException {
List<String> logs = new ArrayList<String>();
TFetchResultsResp tFetchResultsResp = null;
try {
if (stmtHandle != null) {
TFetchResultsReq tFetchResultsReq = new TFetchResultsReq(stmtHandle,
getFetchOrientation(incremental), fetchSize);
tFetchResultsReq.setFetchType((short)1);
tFetchResultsResp = client.FetchResults(tFetchResultsReq);
Utils.verifySuccessWithInfo(tFetchResultsResp.getStatus());
} else {
...........
} catch (SQLException e) {
throw e;
} catch (Exception e) {
throw new SQLException("Error when getting query log: " + e, e);
}
..........
return logs;
}
client.FetchResults方法完整的是 TCLIService.Iface.FetchResults方法,是一个Thrift接口方法。不过debug过程发现client 实际是对TCLIService.Iface的一个JDK动态代理。这样做是为了能对client对象做同步管理,代码如下:
// HiveConnection
public static TCLIService.Iface newSynchronizedClient(
TCLIService.Iface client) {
return (TCLIService.Iface) Proxy.newProxyInstance(
HiveConnection.class.getClassLoader(),
new Class [] { TCLIService.Iface.class },
new SynchronizedHandler(client));
}
private static class SynchronizedHandler implements InvocationHandler {
private final TCLIService.Iface client;
SynchronizedHandler(TCLIService.Iface client) {
this.client = client;
}
@Override
public Object invoke(Object proxy, Method method, Object [] args)
throws Throwable {
try {
synchronized (client) {
return method.invoke(client, args);
}
} catch (InvocationTargetException e) {
.......
} catch (Exception e) {
throw new TException("Error in calling method " + method.getName(), e);
}
}
}
看到这里忽然明白,很有可能是这19S都在这里等锁了!!!
因为在结果获取的线程T1里面也需要使用client进行RPC调用,获取状态client.GetOperationStatus(statusReq),所以这里就存在锁竞争问题啊,而且hive结果获取的线程T1调用waitForOperationToComplete方法时,获取状态client.GetOperationStatus并不Sleep (T2线程获取日志是Sleep的),所以T1(Main)线程很可能会始终占用client的锁,导致T2(LogTask)线程获取不到锁。只有当T1(Main)线程获取到了结果才释放锁,T2(LogTask)线程才能获取到锁,然后获取日志,就造成了结果出来了才能看到日志的现象
void waitForOperationToComplete() throws SQLException {
TGetOperationStatusReq statusReq = new TGetOperationStatusReq(stmtHandle);
TGetOperationStatusResp statusResp;
while (!isOperationComplete) {
try {
statusResp = client.GetOperationStatus(statusReq);
Utils.verifySuccessWithInfo(statusResp.getStatus());
if (statusResp.isSetOperationState()) {
switch (statusResp.getOperationState()) {
case CLOSED_STATE:
case FINISHED_STATE:
isOperationComplete = true;
isLogBeingGenerated = false;
break;
.......
}
} catch (SQLException e) {
.......
} catch (Exception e) {
.......
}
}
}
4、总结
这肯定是一个bug,找了一下Hive的jira果然已经有人提出了用ReentrantLock的公平锁来做同步,Jira地址。ReentrantLock的公平锁保证了T1(Main)线程用完client之后,T2(LogTask)线程是等的时间最长的,T2(LogTask)线程能获得锁!从而保证T2(LogTask)线程获取日志不会在有结果之后才获取到!!
ReentrantLock的公平锁是一个解决方案,但是如果有些场景下查询在同一个链接上执行的SQL都是顺序的,可不可以不要加锁了呢?
答案是不可以!!!
因为thrift就是垃圾,client是线程不安全的,看这个Patch就知道了,任何想多线程操作client的,都要用同步锁或者同步代码块
hive-jdbc获取查询日志慢的问题发现与解决的更多相关文章
- python操作hive并且获取查询结果scheam
执行hive -e 命令并且获取对应的select查询出来的值及其对应的scheam字段 需要在执行语句中前部添加 set hive.cli.print.header=true; 这个设置,如下语句: ...
- MySQL慢查询日志总结
慢查询日志概念 MySQL的慢查询日志是MySQL提供的一种日志记录,它用来记录在MySQL中响应时间超过阀值的语句,具体指运行时间超过long_query_time值的SQL,则会被记录到慢查询日志 ...
- MySQL 慢查询日志总结
慢查询日志概念 MySQL的慢查询日志是MySQL提供的一种日志记录,它用来记录在MySQL中响应时间超过阀值的语句,具体指运行时间超过long_query_time值的SQL,则会被记录到慢查询日志 ...
- mysql慢查询日志按天切割归纳
问题描述: mysql开启慢查询功能,再正常不过,那么存在这样一种情况:慢查询写入的文件位置和文件名是指定好的,如果慢查询时间设定严苛,不出意外,记录慢查询的单个文件大小会日益增大,几十兆或者上百兆, ...
- MySQL慢查询日志总结 日志分析工具mysqldumpslow
MySQL慢查询日志总结 - 潇湘隐者 - 博客园 https://www.cnblogs.com/kerrycode/p/5593204.html 2016-06-17 10:32 by 潇湘隐者, ...
- (转)MySQL慢查询日志总结
慢查询日志概念 原文:http://www.cnblogs.com/kerrycode/p/5593204.html MySQL的慢查询日志是MySQL提供的一种日志记录,它用来记录在MySQL中响应 ...
- 学会读懂 MySql 的慢查询日志
在前边的博客<何时.怎样开启 MySql 日志?>中,我们了解到了怎样启用 MySql 的慢查询日志. 今天我们来看一下怎样去读懂这些慢查询日志.在跟踪慢查询日志之前.首先你得保证最少发生 ...
- 读懂mysql慢查询日志
我们来看一下如何去读懂这些慢查询日志.在跟踪慢查询日志之前,首先你得保证最少发生过一次慢查询.如果你没有可以自己制造一个:root@server# mysql -e 'SELECT SLEEP(8); ...
- Mysql系列(十一)—— 性能分析慢查询日志
转载自:http://www.cnblogs.com/kerrycode/p/5593204.html 慢查询日志概念 MySQL的慢查询日志是MySQL提供的一种日志记录,它用来记录在MySQL中响 ...
随机推荐
- 使用Bootatrap的心得
使用Bootatrap的心得: 更新中... 在使用过一端时间的Bootstrap之后, 发现自己进入了使用误区,本来人家就为你提供好了样式丰富的各种样式,容器.但是我却在一边使用人家的样式,一边自己 ...
- Java线程sleep,yield,join,wait方法详解
1.sleep() 当一个线程调用sleep方法后,他就会放弃cpu,转到阻塞队列,sleep(long millis)方法是Thread类中的静态方法,millis参数设定线程睡眠的时间,毫秒为单位 ...
- 浅谈TCP三次握手和四次挥手
学习三次握手和四次挥手前,先了解下几个基础的概念. Seq:数据段序号,我们都知道TCP是提供有序传输的,有序传输的基础就是数据段序号,接收方在收到发送方乱序包的情况下可以根据Seq进行重新排序,确保 ...
- anaconda下安装新包一直报错(‘parse() got an unexpected keyword argument 'transport_encoding'’)
pip没有更新 解决方案:在prompt上输入 " conda install pip "
- MySQL数据库学习一 数据库概述
1.1 数据库管理技术的发展阶段 人工管理阶段,文件系统阶段,数据库系统阶段. 1.2 数据库系统阶段涉及的概念 数据库(Database DB):是指长期保存在计算机的存储设备上,按照一定的规则组织 ...
- poj-1008-玛雅历
Description 上周末,M.A. Ya教授对古老的玛雅有了一个重大发现.从一个古老的节绳(玛雅人用于记事的工具)中,教授发现玛雅人使用了一个一年有365天的叫做Haab的历法.这个Haab历法 ...
- poj1183 反正切函数
poj1183 反正切函数 第一道poj的题更博,类似于博主这种英文水平,也就切一切这种中文题了吧! 题目大意:给你正整数a,求满足条件的 b 和 c,使得 $\frac {1}{a}=\frac { ...
- C语言中数据类型的取值范围
C语言中数据类型的取值范围如下:char -128 ~ +127 (1 Byte)short -32767 ~ + 32768 (2 Bytes)unsigned short 0 ~ 65536 (2 ...
- linux系统命令学习-用户管理
1. 用户 a) 系统使用user id 简称UID来标志用户的唯一性 b) 用户分为三类:系统用户,根用户,普通用户 i. 普通用户 UID大于500,系统默认普通用户UID从500开始 只能操 ...
- CSS 语法
CSS 语法 CSS 规则由两个主要的部分构成:选择器,以及一条或多条声明: 选择器通常是您需要改变样式的 HTML 元素. 每条声明由一个属性和一个值组成. 属性(property)是您希望设置的样 ...