bzoj 4869: [Shoi2017]相逢是问候 [扩展欧拉定理 线段树]
4869: [Shoi2017]相逢是问候
题意:一个序列,支持区间\(a_i \leftarrow c^{a_i}\),区间求和。在模p意义下。
类似于开根操作,每次取phi在log次后就不变了。
不互质怎么办? 我才知道,
\]
不要求互质,只要求\(x \ge \varphi(p)\)
然后就很好做了...线段树维护每个点的操作次数和和,修改的时候每个点算一下,不变的区间不再更新。
有一个问题,必须把\(\varphi(1)=1\)也加进去。我想了好久好久...因为
2^x \ge \varphi(1), 结果为1
\]
如果这个序列的数是0,再加一层之后和之前并不是不变的!
然后需要给快速幂加点特技...
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
#define mid ((l+r)>>1)
#define lc x<<1
#define rc x<<1|1
#define lson lc, l, mid
#define rson rc, mid+1, r
const int N = 5e4+5;
inline int read() {
char c=getchar(); int x=0,f=1;
while(c<'0' || c>'9') {if(c=='-')f=-1; c=getchar();}
while(c>='0' && c<='9') {x=x*10+c-'0'; c=getchar();}
return x*f;
}
int n, Q, p, c, a[N], op, l, r, phi[100], m, mo;
int Phi(int n) {
int m = sqrt(n), ans = n;
for(int i=2; i<=m; i++) if(n % i == 0) {
ans = ans / i * (i-1);
while(n % i == 0) n /= i;
}
if(n > 1) ans = ans / n * (n-1);
return ans;
}
int Pow(ll a, int b, ll mo, bool &flag) {
ll ans = 1;
bool big = 0;
for(; b; b>>=1) {
if(b&1) {
ans = ans * a;
flag |= big | (ans >= mo);
ans %= mo;
}
a = a * a; if(a >= mo) big = 1, a %= mo;
}
return ans;
}
int cal(int x, int ci) {
if(x >= phi[ci]) x = x % phi[ci] + phi[ci];// flag = 1;
for(int i=ci-1; i>=0; i--) {
bool flag = 0;
x = Pow(c, x, phi[i], flag);
if(flag) x += phi[i];
}
return x % phi[0];
}
namespace S {
struct meow{int sum, ci;} t[N<<2];
void merge(int x) {
t[x].sum = (t[lc].sum + t[rc].sum) %mo;
t[x].ci = min(t[lc].ci, t[rc].ci);
}
void build(int x, int l, int r) {
if(l == r) t[x].sum = a[l];
else {
build(lson);
build(rson);
merge(x);
}
}
void cat(int x, int l, int r, int ql, int qr) {
if(t[x].ci >= m) return;
if(l == r) t[x].ci++, t[x].sum = cal(a[l], t[x].ci);
else {
if(ql <= mid) cat(lson, ql, qr);
if(mid < qr) cat(rson, ql, qr);
merge(x);
}
}
int que(int x, int l, int r, int ql, int qr) {
if(ql<=l && r<=qr) return t[x].sum;
else {
int ans = 0;
if(ql <= mid) ans = (ans + que(lson, ql, qr)) %mo;
if(mid < qr) ans = (ans + que(rson, ql, qr)) %mo;
return ans;
}
}
}
int main() {
freopen("in", "r", stdin);
n=read(); Q=read(); p=read(); c=read();
for(int i=1; i<=n; i++) a[i] = read();
mo = phi[0] = p;
while(p != 1) phi[++m] = p = Phi(p);
phi[++m] = 1;
S::build(1, 1, n);
for(int i=1; i<=Q; i++) {
op=read(); l=read(); r=read();
if(!op) S::cat(1, 1, n, l, r);
else printf("%d\n", S::que(1, 1, n, l, r));
}
}
bzoj 4869: [Shoi2017]相逢是问候 [扩展欧拉定理 线段树]的更多相关文章
- BZOJ:4869: [Shoi2017]相逢是问候
4869: [Shoi2017]相逢是问候 先说点正经的…… 显然做了有限次(我只知道是有限次,而且不会大,别人说是log次?)修改以后会达到不动点,即以后怎么修改都不变了. 然后就随便做了.(3个l ...
- 【bzoj4869】[Shoi2017]相逢是问候 扩展欧拉定理+并查集+树状数组
题目描述 Informatik verbindet dich und mich. 信息将你我连结. B君希望以维护一个长度为n的数组,这个数组的下标为从1到n的正整数.一共有m个操作,可以分为两种:0 ...
- BZOJ4869 [Shoi2017]相逢是问候 【扩展欧拉定理 + 线段树】
题目链接 BZOJ4869 题解 这题调得我怀疑人生,,结果就是因为某些地方\(sb\)地忘了取模 前置题目:BZOJ3884 扩展欧拉定理: \[c^a \equiv c^{a \mod \varp ...
- SHOI 2017 相逢是问候(扩展欧拉定理+线段树)
题意 https://loj.ac/problem/2142 思路 一个数如果要作为指数,那么它不能直接对模数取模,这是常识: 诸如 \(c^{c^{c^{c..}}}\) 的函数递增飞快,不是高精度 ...
- BZOJ.3307.雨天的尾巴(dsu on tree/线段树合并)
BZOJ 洛谷 \(dsu\ on\ tree\).(线段树合并的做法也挺显然不写了) 如果没写过\(dsu\)可以看这里. 对修改操作做一下差分放到对应点上,就成了求每个点子树内出现次数最多的颜色, ...
- 【bzoj4869】[Shoi2017]相逢是问候 线段树+扩展欧拉定理
Description Informatikverbindetdichundmich. 信息将你我连结.B君希望以维护一个长度为n的数组,这个数组的下标为从1到n的正整数.一共有m个操作,可以 分为两 ...
- BZOJ4869:[SHOI2017]相逢是问候——题解
http://www.lydsy.com/JudgeOnline/problem.php?id=4869 题面复制于洛谷:https://www.luogu.org/problemnew/show/P ...
- P3747 相逢是问候 欧拉定理+线段树
巨难!!! 去年六省联考唯一的一道黑牌题,我今天一天从早到晚,把它从暴力15分怼到了90分,极端接近正解了. bzoj上A了,但是洛谷和loj上面就不行.伪正解会T,奇奇怪怪的类正解会WA.. 那么, ...
- [LNOI] 相逢是问候 || 扩展欧拉函数+线段树
原题为2017六省联考的D1T3 给出一个序列,m次操作,模数p和参数c 操作分为两种: 1.将[l,r]区间内的每个数x变为\(c^x\) 2.求[l,r]区间内数的和%p 首先,我们要了解一些数论 ...
随机推荐
- codeforces Gym 101063 C
二进制转十进制 然后按位比较 传送门 http://codeforces.com/gym/101063 #include <cstdio> #include <cmath> # ...
- SQL Server 加密案例解析
一.概述 加密是一种安全措施,有时候甚至是法律要求.作为攻破Windows系统的最后一道防线,通过加密可以保证在没有密钥的情况下获取备份或者物理介质变得毫无意义. 二.概念 加密层次结构 加密层次结构 ...
- 将简单的lambda表达式树转为对应的sqlwhere条件
1.Lambda的介绍 园中已经有很多关于lambda的介绍了.简单来讲就是vs编译器给我带来的语法糖,本质来讲还是匿名函数.在开发中,lambda给我们带来了很多的简便.关于lambda的演变过程可 ...
- cesium编程入门(二)环境搭建
环境搭建 环境搭建 编译 node 安装 Node.js安装包及源码下载地址为:https://nodejs.org/en/download/. 安装完成后,打开命令行,输入:node -v,如果结果 ...
- css3渐变之径向渐变
径向渐变由它的中心定义.可以指定渐变的中心.形状(原型或椭圆形).大小.默认情况下,渐变的中心是 center(表示在中心点),渐变的形状是 ellipse(表示椭圆形),渐变的大小是 farthes ...
- HDU 4034 Graph(Floyd变形——逆向判断)
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4034 Problem Description Everyone knows how to calcu ...
- 微信小程序学习笔记
一.文件结构解析 pages文件夹: 书写各个页面代码以及组件.内部js文件书写js ; wxml文件为HTML ; wxss文件为css样式 : json文件为配置当前页面的默认项,如titl ...
- 微信小程序版2048
最近流行微信"跳一跳"小游戏,我也心血来潮写了一个微信小程序版2048,本篇文章主要分享实现2048的算法以及注意的点,一起来学习吧!(源码地址见文章末尾) 算法 1.生成4* ...
- Swift2
Swift 里的数组和字典虽然都是结构体(struct),但在参数传递过程中处理方式却不一样,默认 Array 是引用传递,Dictionary 是值传递.而在 Java 中,由于数组和 Map 都是 ...
- jquery自定义进度条与h5原生进度条
介绍一款自定义的进度条 <div class="box-nine"> <div class="progress"> <!--一 ...