BZOJ 3209: 花神的数论题 [数位DP]
3209: 花神的数论题
题意:求\(1到n\le 10^{15}\)二进制1的个数的乘积,取模1e7+7
二进制最多50位,我们统计每种1的个数的数的个数,快速幂再乘起来就行了
裸数位DP..\(f[i][j]\)i位数j个1的方案数..不考虑天际线就是组合数...
比较坑的地方是本题求f要取模\(phi(1e7+7)\),然后它并不是质数...
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
const int N=60;
const ll P=10000007, Phi=9988440;
inline ll read(){
char c=getchar();ll x=0,f=1;
while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}
return x*f;
}
ll n, ans=1; int a[N], len;
ll Pow(ll a, ll b) { //printf("Pow %lld %lld\n",a,b);
ll ans=1;
for(; b; b>>=1, a=a*a%P)
if(b&1) ans=ans*a%P;
return ans;
}
ll f[N][N];
ll dfs(int d, int sky, int x) {
if(d==0) return x==0;
if(!sky) return f[d][x];
int lim = sky ? a[d] : 1;
ll now=0;
for(int i=0; i<=lim; i++) (now += dfs(d-1, sky && i==lim, x-i))%=Phi;
return sky ? now : f[d][x]=now;
}
int main() {
freopen("in","r",stdin);
n=read();
while(n) a[++len]=n&1, n>>=1;
//memset(f,-1,sizeof(f));
f[0][0]=1;
for(int i=1; i<=len; i++){
f[i][0]=1;
for(int j=1; j<=i; j++) f[i][j]=(f[i-1][j]+f[i-1][j-1])%Phi;
}
for(int i=2; i<=len; i++)
ans = ans*Pow(i, dfs(len, 1, i) )%P;
printf("%lld", ans);
}
BZOJ 3209: 花神的数论题 [数位DP]的更多相关文章
- bzoj 3209 花神的数论题 —— 数位DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3209 算是挺简单的数位DP吧,但还是花了好久才弄明白... 又参考了博客:https://b ...
- BZOJ 3209 花神的数论题 数位DP+数论
题目大意:令Sum(i)为i在二进制下1的个数 求∏(1<=i<=n)Sum(i) 一道非常easy的数位DP 首先我们打表打出组合数 然后利用数位DP统计出二进制下1的个数为x的数的数量 ...
- BZOJ3209: 花神的数论题(数位DP)
题目: 3209: 花神的数论题 解析: 二进制的数位DP 因为\([1,n]\)中每一个数对应的二进制数是唯一的,我们枚举\(1\)的个数\(k\),计算有多少个数的二进制中有\(k\)个\(1\) ...
- 【BZOJ3209】花神的数论题 数位DP
[BZOJ3209]花神的数论题 Description 背景众所周知,花神多年来凭借无边的神力狂虐各大 OJ.OI.CF.TC …… 当然也包括 CH 啦.描述话说花神这天又来讲课了.课后照例有超级 ...
- bzoj 3209 花神的数论题——二进制下的数位dp
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3209 可以枚举 “1的个数是...的数有多少个” ,然后就是用组合数算在多少位里选几个1. ...
- BZOJ 3209: 花神的数论题【数位dp】
Description 背景众所周知,花神多年来凭借无边的神力狂虐各大 OJ.OI.CF.TC …… 当然也包括 CH 啦.描述话说花神这天又来讲课了.课后照例有超级难的神题啦…… 我等蒟蒻又遭殃了. ...
- [数位dp] bzoj 3209 花神的数论题
题意:中文题. 思路:和普通数位dp一样,这里转换成二进制,然后记录有几个一. 统计的时候乘起来就好了. 代码: #include"cstdlib" #include"c ...
- [BZOJ 3209] 花神的数论题 【数位统计】
题目链接: BZOJ - 3209 题目大意 设 f(x) 为 x 的二进制表示中 1 的个数.给定 n ,求 ∏ f(i) (1 <= i <= n) . 题目分析 总体思路是枚 ...
- bzoj3209 花神的数论题——数位dp
题目大意: 花神的题目是这样的 设 sum(i) 表示 i 的二进制表示中 1 的个数.给出一个正整数 N ,花神要问你 派(Sum(i)),也就是 sum(1)—sum(N) 的乘积. 要对1000 ...
随机推荐
- Ping pong(树状数组求序列中比某个位置上的数小的数字个数)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2492 Ping pong Time Limit: 2000/1000 MS (Java/Others) ...
- UEP-时间的比较
时间的比较: var rec = ajaxform.getRecord(); var sd = rec.get("startDate"); var ed = rec.get(&qu ...
- 010 有顺序的Map的实现类:TreeMap和LinkedHashMap
作者:nnngu GitHub:https://github.com/nnngu 博客园:http://www.cnblogs.com/nnngu 简书:https://www.jianshu.com ...
- java中类的加载过程和对象的创建过程
1.类加载过程 首先,jvm在执行时,遇到一个新的类,会先去内存的方法区中去寻找该类的.class文件,如果找到了就直接运行,如果没有找到,则会去硬盘中去寻找该类的.class文件,并将该类文件加载到 ...
- maven项目 在eclipse,InteliJ IDEA中的一些问题
转载请注明出处,谢谢! 不论我们用什么ide来编辑我们的代码,最终的产品都会脱离ide来运行:正如燕飞离了巢,正如你离开了家,不期然就会运转出现问题. - 单强 2018年1月26日11:53 大家是 ...
- java访问修饰符 public protect default private
适用范围<访问权限范围越小,安全性越高> 访问权限 类 包 子类 其他包 public ok ok ok ok (对所有可用的 ...
- 直接请求转发(Forward)和间接请求转发(Redirect)两种区别?
用户向服务器发送了一次HTTP请求,该请求肯能会经过多个信息资源处理以后才返回给用户,各个信息资源使用请求转发机制相互转发请求,但是用户是感觉不到请求转发的.根据转发方式的不同,可以区分为直接请求转发 ...
- 如何安装 Composer
下载 Composer 安装前请务必确保已经正确安装了 PHP.打开命令行窗口并执行 php -v 查看是否正确输出版本号. 打开命令行并依次执行下列命令安装最新版本的 Composer: php - ...
- 使用layui-tree美化左侧菜单,点击生成tab选项
layui-tree美化左侧菜单 html <div class="layui-side layui-bg-black"> <div class="la ...
- Spring MVC中使用POI导出Word
内容绝大部分来源于网络 准备工作 准备[XwpfTUtil]工具类(来源于网络) 准备word模版 下载[XwpfTUtil]工具类 import org.apache.poi.xwpf.usermo ...