You are asked to cut off trees in a forest for a golf event. The forest is represented as a non-negative 2D map, in this map:

  1. 0 represents the obstacle can't be reached.
  2. 1 represents the ground can be walked through.
  3. The place with number bigger than 1 represents a tree can be walked through, and this positive number represents the tree's height.

You are asked to cut off all the trees in this forest in the order of tree's height - always cut off the tree with lowest height first. And after cutting, the original place has the tree will become a grass (value 1).

You will start from the point (0, 0) and you should output the minimum steps you need to walk to cut off all the trees. If you can't cut off all the trees, output -1 in that situation.

You are guaranteed that no two trees have the same height and there is at least one tree needs to be cut off.

Example 1:

Input:
[
[1,2,3],
[0,0,4],
[7,6,5]
]
Output: 6

Example 2:

Input:
[
[1,2,3],
[0,0,0],
[7,6,5]
]
Output: -1

Example 3:

Input:
[
[2,3,4],
[0,0,5],
[8,7,6]
]
Output: 6
Explanation: You started from the point (0,0) and you can cut off the tree in (0,0) directly without walking.

Hint: size of the given matrix will not exceed 50x50.

这道题让我们砍掉所有高度大于1的树,而且要求是按顺序从低到高来砍,那么本质实际上还是要求任意两点之间的最短距离啊。对于这种类似迷宫遍历求最短路径的题,BFS是不二之选啊。那么这道题就对高度相邻的两棵树之间调用一个BFS,所以我们可以把BFS的内容放倒子函数helper中来使用。那么我们首先就要将所有的树从低到高进行排序,我们遍历原二位矩阵,将每棵树的高度及其横纵坐标取出来,组成一个三元组,然后放到vector中,之后用sort对数组进行排序,因为sort默认是以第一个数字排序,这也是为啥我们要把高度放在第一个位置。然后我们就遍历我们的trees数组,我们的起始位置是(0,0),终点位置是从trees数组中取出的树的位置,然后调用BFS的helper函数,这个BFS的子函数就是很基本的写法,没啥过多需要讲解的地方,会返回最短路径的值,如果无法到达目标点,就返回-1。所以我们先检查,如果helper函数返回-1了,那么我们就直接返回-1,否则就将cnt加到结果res中。然后更新我们的起始点为当前树的位置,然后循环取下一棵树即可,参见代码如下:

class Solution {
public:
int cutOffTree(vector<vector<int>>& forest) {
int m = forest.size(), n = forest[].size(), res = , row = , col = ;
vector<vector<int>> trees;
for (int i = ; i < m; ++i) {
for (int j = ; j < n; ++j) {
if (forest[i][j] > ) trees.push_back({forest[i][j], i, j});
}
}
sort(trees.begin(), trees.end());
for (int i = ; i < trees.size(); ++i) {
int cnt = helper(forest, row, col, trees[i][], trees[i][]);
if (cnt == -) return -;
res += cnt;
row = trees[i][];
col = trees[i][];
}
return res;
}
int helper(vector<vector<int>>& forest, int row, int col, int treeRow, int treeCol) {
if (row == treeRow && col == treeCol) return ;
int m = forest.size(), n = forest[].size(), cnt = ;
queue<int> q{{row * n + col}};
vector<vector<int>> visited(m, vector<int>(n));
vector<int> dir{-, , , , -};
while (!q.empty()) {
++cnt;
for (int i = q.size(); i > ; --i) {
int r = q.front() / n, c = q.front() % n; q.pop();
for (int k = ; k < ; ++k) {
int x = r + dir[k], y = c + dir[k + ];
if (x < || x >= m || y < || y >= n || visited[x][y] == || forest[x][y] == ) continue;
if (x == treeRow && y == treeCol) return cnt;
visited[x][y] = ;
q.push(x * n + y);
}
}
}
return -;
}
};

参考资料:

https://leetcode.com/problems/cut-off-trees-for-golf-event/

https://leetcode.com/problems/cut-off-trees-for-golf-event/discuss/107403/c-sort-bfs-with-explanation

https://leetcode.com/problems/cut-off-trees-for-golf-event/discuss/107404/java-solution-priorityqueue-bfs

LeetCode All in One 题目讲解汇总(持续更新中...)

[LeetCode] Cut Off Trees for Golf Event 为高尔夫赛事砍树的更多相关文章

  1. [LeetCode] 675. Cut Off Trees for Golf Event 为高尔夫赛事砍树

    You are asked to cut off trees in a forest for a golf event. The forest is represented as a non-nega ...

  2. LeetCode - Cut Off Trees for Golf Event

    You are asked to cut off trees in a forest for a golf event. The forest is represented as a non-nega ...

  3. LeetCode 675. Cut Off Trees for Golf Event

    原题链接在这里:https://leetcode.com/problems/cut-off-trees-for-golf-event/description/ 题目: You are asked to ...

  4. [Swift]LeetCode675. 为高尔夫比赛砍树 | Cut Off Trees for Golf Event

    You are asked to cut off trees in a forest for a golf event. The forest is represented as a non-nega ...

  5. 675. Cut Off Trees for Golf Event

    // Potential improvements: // 1. we can use vector<int> { h, x, y } to replace Element, sortin ...

  6. [LeetCode] 675. Cut Off Trees for Golf Event_Hard tag: BFS

    You are asked to cut off trees in a forest for a golf event. The forest is represented as a non-nega ...

  7. Leetcode 675.为高尔夫比赛砍树

    为高尔夫比赛砍树 你被请来给一个要举办高尔夫比赛的树林砍树. 树林由一个非负的二维数组表示, 在这个数组中: 0 表示障碍,无法触碰到. 1 表示可以行走的地面. 比1大的数 表示一颗允许走过的树的高 ...

  8. Leetcode之深度优先搜索(DFS)专题-515. 在每个树行中找最大值(Find Largest Value in Each Tree Row)

    Leetcode之深度优先搜索(DFS)专题-515. 在每个树行中找最大值(Find Largest Value in Each Tree Row) 深度优先搜索的解题详细介绍,点击 您需要在二叉树 ...

  9. [LeetCode] Minimum Height Trees 最小高度树

    For a undirected graph with tree characteristics, we can choose any node as the root. The result gra ...

随机推荐

  1. APS期刊投稿准备: REVTex格式

    APS是American Physics Society的简称.旗下比较有影响力的期刊有: "pra, prb, prc, prd, pre, prl, prstab, prstper, o ...

  2. 根据IO流源码深入理解装饰设计模式使用

    一:摘要 通过对java的IO类中我们可以得出:IO源码中使用装饰设计模式频率非常高, 对装饰设计模式而言,他能够避免继承体系的臃肿,同时也可以动态的给一个对象添加一些额外的功能,如果要扩展一个功能, ...

  3. 云计算--网络原理与应用--20171122--STP与HSRP

    简单了解STP 学习HSRP 实验 一.  简单学习STP STP(spanning tree protocol)生成树协议,就是把一个环形的结构改变成一个树形的结构.通过一些算法,在逻辑上阻塞一些端 ...

  4. Oracle之SQL优化专题01-查看SQL执行计划的方法

    在我2014年总结的"SQL Tuning 基础概述"中,其实已经介绍了一些查看SQL执行计划的方法,但是不够系统和全面,所以本次SQL优化专题,就首先要系统的介绍一下查看SQL执 ...

  5. 凡事预则立(Beta)

    听说--凡事预则立 吸取之前alpha冲刺的经验教训,也为了这次的beta冲刺可以更好更顺利地进行,更是为了迎接我们的新成员玮诗.我们开了一次组内会议,进行beta冲刺的规划. 上一张我们的合照: 具 ...

  6. alpha-咸鱼冲刺day8-紫仪

    总汇链接 一,合照 emmmmm.自然还是没有的. 二,项目燃尽图 三,项目进展 正在进行页面整合.然后还有注册跟登陆的功能完善-- 四,问题困难 数据流程大概是搞定了.不过语法不是很熟悉,然后还有各 ...

  7. Session 和 Cookie 区别

    会话跟踪是Web程序中常用的技术,用来跟踪用户的整个会话.常用的会话跟踪技术是Cookie与Session.==Cookie通过在客户端记录信息确定用户身份,Session通过在服务器端记录信息确定用 ...

  8. Aache的虚拟主机配置虚拟目录

    3. 打开 httpd.conf 文件, 添加如下代码: # Virtual hosts Include conf/extra/httpd-vhosts.conf 如果已存在,将Include前面的# ...

  9. APP手机端加载不到资源服务器后台解决参考

    今天发现app登录时,报could not get resource,日志中打印的是redis相关的错误,于是开始一步步检查错误! 后台架构:redis+mysql+elk+tomcat+zookee ...

  10. selenium多个标签页的切换(弹出新页面的切换)

    1_windows = driver.current_window_handle #定位当前页面句柄 all_handles = driver.window_handles #获取全部页面句柄 for ...