[Codeforces 961G]Partitions
Description
给你 \(n\) 个不同的元素组成的集合 \(R\) ,每个元素有一个权值 \(w\) 。对于一个子集集合 \(S\) ,它的价值为 \(W(S)=|S|\cdot\sum\limits_{i\in S}w_i\) 。现要求将该集合 \(R\) 划分成 \(k\) 个互不相交的非空子集 \(S_i\) 。定义一种划分的价值为 \(\sum\limits_{i=1}^k W(S_i)\) 。求所有划分的价值和。对大质数取模。
\(1\leq k\leq n\leq 2\cdot 10^5\)
Solution
容易发现对于不同的元素,他对答案的贡献本质是相同的。即我们只要求出某一种元素在所有方案中出现的次数 \(sum\) ,那么答案就是 \(sum\times \sum\limits_{i=1}^n w_i\) 。
考虑如何求 \(sum\) 。
容易发现它对 \(sum\) 的贡献只与和它被划分到同一集合的元素的个数有关。
- 如果该元素被单独划分成一组,那么答案的贡献为 \(S(n-1, k-1)\) 。(其中形同 \(S(n, m)\) 的表示第二类斯特林数。)因为它单独分为一组,所以答案贡献为 \(1\) ,只要讨论其他 \(n-1\) 个元素怎么分即可;
- 如果不是单独分为一组,我们考虑用类似的方法来讨论。还是将其他的 \(n-1\) 个元素先分好,共 \(S(n-1,k)\) 种。接下来考虑剩下的元素该如何放。对于一种划分 \(n-1\) 个元素的情况。我们记每一个子集元素个数为 \(a_i\) 。那么答案应该是 \(\sum\limits_{i=1}^k a_i+1\) 。不过因为 \(\sum\limits_{i=1}^k a_i=n-1\) ,所以在这种划分情况下,该元素的贡献就是 \(n+k-1\) 。故总贡献为 \((n+k-1)\cdot S(n-1, k)\) 。
综上答案就是 \((S(n-1,k-1)+(n+k-1)\cdot S(n-1, k))\cdot\sum\limits_{i=1}^n w_i\) 。
\(S(n,m)\) 用通项公式计算就好了。
Code
#include <bits/stdc++.h>
using namespace std;
const int N = 2e5, yzh = 1e9+7;
int x, n, k, inv[N+5];
int quick_pow(int a, int b) {
int ans = 1;
while (b) {
if (b&1) ans = 1ll*ans*a%yzh;
a = 1ll*a*a%yzh, b >>= 1;
}
return ans;
}
int S(int n, int m) {
int ans = 0;
for (int i = 0; i <= m; i++) {
int t = 1ll*inv[i]*inv[m-i]%yzh*quick_pow(m-i, n)%yzh;
if (i&1) (ans -= t) %= yzh;
else (ans += t) %= yzh;
}
return ans;
}
void work() {
scanf("%d%d", &n, &k); inv[0] = inv[1] = 1;
for (int i = 2; i <= k; i++) inv[i] = -1ll*yzh/i*inv[yzh%i]%yzh;
for (int i = 1; i <= k; i++) inv[i] = 1ll*inv[i-1]*inv[i]%yzh;
int sum = 0;
for (int i = 1; i <= n; i++) scanf("%d", &x), (sum += x) %= yzh;
int ans = (S(n-1, k-1)+1ll*(n+k-1)*S(n-1, k)%yzh)%yzh;
ans = 1ll*ans*sum%yzh;
printf("%d\n", (ans+yzh)%yzh);
}
int main() {work(); return 0; }
[Codeforces 961G]Partitions的更多相关文章
- 【题解】Codeforces 961G Partitions
[题解]Codeforces 961G Partitions cf961G 好题啊哭了,但是如果没有不小心看了一下pdf后面一页的提示根本想不到 题意 已知\(U=\{w_i\}\),求: \[ \s ...
- CF 961G Partitions
推不动式子 我们考虑每一个$w_i$对答案的贡献,因为题目中定义集合的价值为$W(S) = \left | S \right |\sum_{x \in S}w_x$,这个系数$\left | S \r ...
- [总结]其他杂项数学相关(定理&证明&板子)
目录 写在前面 一类反演问题 莫比乌斯反演 快速莫比乌斯变换(反演)与子集卷积 莫比乌斯变换(反演) 子集卷积 二项式反演 内容 证明 应用举例 另一形式 斯特林反演 第一类斯特林数 第二类斯特林数 ...
- 【CodeForces】961 G. Partitions 斯特林数
[题目]G. Partitions [题意]n个数$w_i$,每个非空子集S的价值是$W(S)=|S|\sum_{i\in S}w_i$,一种划分方案的价值是所有非空子集的价值和,求所有划分成k个非空 ...
- 「CF 961G」Partitions
题目链接 戳我 \(Solution\) 首先,这个直接推式子.自己推去 所以我们来想一想一些巧妙的方法 \(|S|\sum w_i\) 可以转化为:划分好集合后,每个点都对当前点有\(w_i\)的贡 ...
- Codeforces Global Round 7 C. Permutation Partitions(组合数学)
题意: 给你 n 长全排列的一种情况,将其分为 k 份,取每份中的最大值相加,输出和的最大值和有多少种分法等于最大值. 思路: 取前 k 大值,储存下标,每两个 k 大值间有 vi+1 - vi 种分 ...
- 【CF961G】Partitions(第二类斯特林数)
[CF961G]Partitions(第二类斯特林数) 题面 CodeForces 洛谷 题解 考虑每个数的贡献,显然每个数前面贡献的系数都是一样的. 枚举当前数所在的集合大小,所以前面的系数\(p\ ...
- Codeforces Beta Round #97 (Div. 1) B. Rectangle and Square 暴力
B. Rectangle and Square 题目连接: http://codeforces.com/contest/135/problem/B Description Little Petya v ...
- Educational Codeforces Round 41
Educational Codeforces Round 41 D. Pair Of Lines 考虑先把凸包找出来,如果凸包上的点数大于\(4\)显然不存在解,小于等于\(2\)必然存在解 否则枚 ...
随机推荐
- 工作流Activiti5.13学习笔记(一)
了解工作流 1.工作流(Workflow),就是“业务过程的部分或整体在计算机应用环境下的自动化”,它主要解决的是“使在多个参与者之间按照某种预定义的规则传递文档.信息或任务的过程自动进行,从而实现某 ...
- Java虚拟机16:Metaspace
被废弃的持久代 想起之前面试的时候有面试官问起过我一个问题:Java 8为什么要废弃持久代即Metaspace的作用.由于当时使用的Java 7且研究重心不在JVM上,一下没有回答上来,今天突然想起这 ...
- 项目Alpha冲刺Day2
一.会议照片 二.项目进展 1.今日安排 初步搭建后台框架,根据昨天的最终设计再修改原型,成功使用powerDesigner导出sql. 2.问题困难 使用了比较多的框架,而且是首次尝试纯java配置 ...
- Alpha冲刺Day5
Alpha冲刺Day5 一:站立式会议 今日安排: 首先由于经过黄腾飞短暂的测试,发现导入导出仍然有一些问题,今天需要进行完善 由黄腾飞负责企业自查风险管理子模块,要求为单元进行风险点的管理 由张梨贤 ...
- Vue.js学习
<!DOCTYPE html> <html> <head> <title>xxx</title> </head> <bod ...
- 项目Beta冲刺Day5
项目进展 李明皇 今天解决的进度 服务器端还未完善,所以无法进行联动调试.对页面样式和逻辑进行优化 明天安排 前后端联动调试 林翔 今天解决的进度 完成维护登录态,实现图片上传,微信开发工具上传图片不 ...
- 利用python处理文档中各字段出现的次数并排序
import string path = 'waldnn' with open(path,'r') as text: words = [raw_word.strip(string.punctuatio ...
- Clover3(可以让Windows Explorer像浏览器一样有标签页)
这不是广告!!! 下载地址:http://cn.ejie.me/ 效果图:
- 使用 BenchmarkDotnet 测试代码性能
先来点题外话,清明节前把工作辞了(去 tm 的垃圾团队,各种拉帮结派.勾心斗角).这次找工作就得慢慢找了,不能急了,希望能找到个好团队,好岗位吧.顺便这段时间也算是比较闲,也能学习一下和填掉手上的坑. ...
- 使用cxf创建webservice 出现timeOut的问题,设置spring超时时间
<?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.sp ...