POJ1006: 中国剩余定理的完美演绎
POJ1006: 中国剩余定理的完美演绎
问题描述
人自出生起就有体力,情感和智力三个生理周期,分别为23,28和33天。一个周期内有一天为峰值,在这一天,人在对应的方面(体力,情感或智力)表现最好。通常这三个周期的峰值不会是同一天。现在给出三个日期,分别对应于体力,情感,智力出现峰值的日期。然后再给出一个起始日期,要求从这一天开始,算出最少再过多少天后三个峰值同时出现。
问题分析
首先我们要知道,任意两个峰值之间一定相距整数倍的周期。假设一年的第N天达到峰值,则下次达到峰值的时间为N+Tk(T是周期,k是任意正整数)。所以,三个峰值同时出现的那一天(S)应满足
S = N1 + T1*k1 = N2 + T2*k2 = N3 + T3*k3
N1,N2,N3分别为为体力,情感,智力出现峰值的日期, T1,T2,T3分别为体力,情感,智力周期。 我们需要求出k1,k2,k3三个非负整数使上面的等式成立。
想直接求出k1,k2,k3貌似很难,但是我们的目的是求出S, 可以考虑从结果逆推。根据上面的等式,S满足三个要求:除以T1余数为N1,除以T2余数为N2,除以T3余数为N3。这样我们就把问题转化为求一个最小数,该数除以T1余N1,除以T2余N2,除以T3余N3。这就是著名的中国剩余定理,我们的老祖宗在几千年前已经对这个问题想出了一个精妙的解法。依据此解法的算法,时间复杂度可达到O(1)。下面就介绍一下中国剩余定理。
中国剩余定理介绍
在《孙子算经》中有这样一个问题:“今有物不知其数,三三数之剩二(除以3余2),五五数之剩三(除以5余3),七七数之剩二(除以7余2),问物几何?”这个问题称为“孙子问题”,该问题的一般解法国际上称为“中国剩余定理”。具体解法分三步:
- 找出三个数:从3和5的公倍数中找出被7除余1的最小数15,从3和7的公倍数中找出被5除余1 的最小数21,最后从5和7的公倍数中找出除3余1的最小数70。
- 用15乘以2(2为最终结果除以7的余数),用21乘以3(3为最终结果除以5的余数),同理,用70乘以2(2为最终结果除以3的余数),然后把三个乘积相加(15*2+21*3+70*2)得到和233。
- 用233除以3,5,7三个数的最小公倍数105,得到余数23,即233%105=23。这个余数23就是符合条件的最小数。
就这么简单。我们在感叹神奇的同时不禁想知道古人是如何想到这个方法的,有什么基本的数学依据吗?
中国剩余定理分析
我们将“孙子问题”拆分成几个简单的小问题,从零开始,试图揣测古人是如何推导出这个解法的。
首先,我们假设n1是满足除以3余2的一个数,比如2,5,8等等,也就是满足3*k+2(k>=0)的一个任意数。同样,我们假设n2是满足除以5余3的一个数,n3是满足除以7余2的一个数。
有了前面的假设,我们先从n1这个角度出发,已知n1满足除以3余2,能不能使得 n1+n2 的和仍然满足除以3余2?进而使得n1+n2+n3的和仍然满足除以3余2?
这就牵涉到一个最基本数学定理,如果有a%b=c,则有(a+kb)%b=c(k为非零整数),换句话说,如果一个除法运算的余数为c,那么被除数与k倍的除数相加(或相减)的和(差)再与除数相除,余数不变。这个是很好证明的。
以此定理为依据,如果n2是3的倍数,n1+n2就依然满足除以3余2。同理,如果n3也是3的倍数,那么n1+n2+n3的和就满足除以3余2。这是从n1的角度考虑的,再从n2,n3的角度出发,我们可推导出以下三点:
- 为使n1+n2+n3的和满足除以3余2,n2和n3必须是3的倍数。
- 为使n1+n2+n3的和满足除以5余3,n1和n3必须是5的倍数。
- 为使n1+n2+n3的和满足除以7余2,n1和n2必须是7的倍数。
因此,为使n1+n2+n3的和作为“孙子问题”的一个最终解,需满足:
- n1除以3余2,且是5和7的公倍数。
- n2除以5余3,且是3和7的公倍数。
- n3除以7余2,且是3和5的公倍数。
所以,孙子问题解法的本质是从5和7的公倍数中找一个除以3余2的数n1,从3和7的公倍数中找一个除以5余3的数n2,从3和5的公倍数中找一个除以7余2的数n3,再将三个数相加得到解。在求n1,n2,n3时又用了一个小技巧,以n1为例,并非从5和7的公倍数中直接找一个除以3余2的数,而是先找一个除以3余1的数,再乘以2。
这里又有一个数学公式,如果a%b=c,那么(a*k)%b=a%b+a%b+…+a%b=c+c+…+c=kc(k>0),也就是说,如果一个除法的余数为c,那么被除数的k倍与除数相除的余数为kc。展开式中已证明。
最后,我们还要清楚一点,n1+n2+n3只是问题的一个解,并不是最小的解。如何得到最小解?我们只需要从中最大限度的减掉掉3,5,7的公倍数105即可。道理就是前面讲过的定理“如果a%b=c,则有(a-kb)%b=c”。所以(n1+n2+n3)%105就是最终的最小解。
总结
经过分析发现,中国剩余定理的孙子解法并没有什么高深的技巧,就是以下两个基本数学定理的灵活运用:
- 如果 a%b=c , 则有 (a+kb)%b=c (k为非零整数)。
- 如果 a%b=c,那么 (a*k)%b=kc (k为大于零的整数)。
POJ1006: 中国剩余定理的完美演绎的更多相关文章
- [转]POJ1006: 中国剩余定理的完美演绎
Biorhythms Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 117973 Accepted: 37026 Des ...
- POJ1006: 中国剩余定理的完美演绎(非原创)
问题描述 人自出生起就有体力,情感和智力三个生理周期,分别为23,28和33天.一个周期内有一天为峰值,在这一天,人在对应的方面(体力,情感或智力)表现最好.通常这三个周期的峰值不会是同一天.现在给出 ...
- Biorhythms(poj1006+中国剩余定理)
Biorhythms Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 117973 Accepted: 37026 Des ...
- poj1006 中国剩余定理&&中国剩余定理解析
poj 1006 题的思路不是很难的,可以转化数学式: 现设 num 是下一个相同日子距离开始的天数 p,e,i,d 如题中所设! 那么就可以得到三个式子:( num + d ) % 23 == p: ...
- poj1006生理周期(中国剩余定理)
/* 中国剩余定理可以描述为: 若某数x分别被d1..….dn除得的余数为r1.r2.….rn,则可表示为下式: x=R1r1+R2r2+…+Rnrn+RD 其中R1是d2.d3.….dn的公倍数,而 ...
- POJ1006 - Biorhythms(中国剩余定理)
题目大意 略...有中文... 题解 就是解同余方程组 x≡(p-d)(mod 23) x≡(e-d)(mod 28) x≡(i-d)(mod 33) 最简单的中国剩余定理应用.... 代码: #in ...
- poj1006 ( hdu1370 ):中国剩余定理裸题
裸题,没什么好说的 第一个中国剩余定理 写暴力都过了..可见这题有多水 代码: #include<iostream> #include<stdio.h> #include< ...
- [POJ1006]生理周期 (中国剩余定理)
蒟蒻并不会中国剩余定理 交的时候还出现了PE的错误 下面是AC代码 #include<iostream> #include<cstdio> using namespace st ...
- 【学习笔记-中国剩余定理】POJ1006 Biorhythms
Biorhythms Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 139500 Accepted: 44772 Des ...
随机推荐
- 基于docker 如何部署surging分布式微服务引擎
1.前言 转眼间surging 开源已经有1年了,经过1年的打磨,surging已从最初在window 部署的分布式微服务框架,到现在的可以在docker部署利用rancher 进行服务编排的分布式微 ...
- 自学Python,新手上路,好资源免费分享
Python 可以用来做什么? 在我看来,基本上可以不负责任地认为,Python 可以做任何事情.无论是从入门级选手到专业级选手都在做的爬虫,还是Web 程序开发.桌面程序开发还是科学计算.图像处理, ...
- 简单工厂模式--java代码实现
简单工厂模式 工厂,生产产品的场所.比如农夫山泉工厂,生产农夫山泉矿泉水.茶π等饮料.矿泉水和茶π都属于饮料,都具有解渴的功能,但是每种饮料给人的感觉是不一样的.矿泉水和茶π在Java中相当于子类,饮 ...
- C#串口通讯概念以及简单实现
最近在研究串口通讯,其中有几个比较重要的概念,RS-232这种适配于上位机和PC端进行连接,RS-232只限于PC串口和设备间点对点的通信.它很简单的就可以进行连接,由于串口通讯是异步的,也就是说你可 ...
- redis一致性hash算法理解
一般算法: 对对象先hash然后对redis数量取模,如果结果是0就存在0的节点上. 1.2同上,假设有0-3四个redis节点.20个数据: 进行取模后分布如下: 现在因为压力过大需要扩容,增加一台 ...
- 使用强类型实体Id来避免原始类型困扰(一)
原文地址:https://andrewlock.net/using-strongly-typed-entity-ids-to-avoid-primitive-obsession-part-1/ 作者: ...
- 解决vs2019中暂时无法为.net core WinForms使用 Designer 的临时方法
目录 解决vs2019中暂时无法为.net core WinForms使用 Designer 的临时方法 安装 vs 2019 professional/enterprise版本 在vs的设置里,勾选 ...
- Android进程间通信(一):AIDL使用详解
一.概述 AIDL是Android Interface Definition Language的缩写,即Android接口定义语言.它是Android的进程间通信比较常用的一种方式. Android中 ...
- JS异步操作新体验之 async函数
1.初识 async 函数 ES6中提供了两个很好的解决异步操作的方案 Promise 和 Generator,ES2017标准中引入的 async 函数就是建立在 Promise 和 Gener ...
- transition-timing-function 属性
以相同的速度从开始到结束的过渡效果: div { transition-timing-function: linear; -moz-transition-timing-function: linear ...