POJ1006: 中国剩余定理的完美演绎

 
问题描述

人自出生起就有体力,情感和智力三个生理周期,分别为23,28和33天。一个周期内有一天为峰值,在这一天,人在对应的方面(体力,情感或智力)表现最好。通常这三个周期的峰值不会是同一天。现在给出三个日期,分别对应于体力,情感,智力出现峰值的日期。然后再给出一个起始日期,要求从这一天开始,算出最少再过多少天后三个峰值同时出现。

问题分析

首先我们要知道,任意两个峰值之间一定相距整数倍的周期。假设一年的第N天达到峰值,则下次达到峰值的时间为N+Tk(T是周期,k是任意正整数)。所以,三个峰值同时出现的那一天(S)应满足

S = N1 + T1*k1 = N2 + T2*k2 = N3 + T3*k3

N1,N2,N3分别为为体力,情感,智力出现峰值的日期, T1,T2,T3分别为体力,情感,智力周期。 我们需要求出k1,k2,k3三个非负整数使上面的等式成立。

想直接求出k1,k2,k3貌似很难,但是我们的目的是求出S, 可以考虑从结果逆推。根据上面的等式,S满足三个要求:除以T1余数为N1,除以T2余数为N2,除以T3余数为N3。这样我们就把问题转化为求一个最小数,该数除以T1余N1,除以T2余N2,除以T3余N3。这就是著名的中国剩余定理,我们的老祖宗在几千年前已经对这个问题想出了一个精妙的解法。依据此解法的算法,时间复杂度可达到O(1)。下面就介绍一下中国剩余定理。

中国剩余定理介绍

在《孙子算经》中有这样一个问题:“今有物不知其数,三三数之剩二(除以3余2),五五数之剩三(除以5余3),七七数之剩二(除以7余2),问物几何?”这个问题称为“孙子问题”,该问题的一般解法国际上称为“中国剩余定理”。具体解法分三步:

  1. 找出三个数:从3和5的公倍数中找出被7除余1的最小数15,从3和7的公倍数中找出被5除余1 的最小数21,最后从5和7的公倍数中找出除3余1的最小数70。
  2. 用15乘以2(2为最终结果除以7的余数),用21乘以3(3为最终结果除以5的余数),同理,用70乘以2(2为最终结果除以3的余数),然后把三个乘积相加(15*2+21*3+70*2)得到和233。
  3. 用233除以3,5,7三个数的最小公倍数105,得到余数23,即233%105=23。这个余数23就是符合条件的最小数。

就这么简单。我们在感叹神奇的同时不禁想知道古人是如何想到这个方法的,有什么基本的数学依据吗?

中国剩余定理分析

我们将“孙子问题”拆分成几个简单的小问题,从零开始,试图揣测古人是如何推导出这个解法的。

首先,我们假设n1是满足除以3余2的一个数,比如2,5,8等等,也就是满足3*k+2(k>=0)的一个任意数。同样,我们假设n2是满足除以5余3的一个数,n3是满足除以7余2的一个数。

有了前面的假设,我们先从n1这个角度出发,已知n1满足除以3余2,能不能使得 n1+n2 的和仍然满足除以3余2?进而使得n1+n2+n3的和仍然满足除以3余2?

这就牵涉到一个最基本数学定理,如果有a%b=c,则有(a+kb)%b=c(k为非零整数),换句话说,如果一个除法运算的余数为c,那么被除数与k倍的除数相加(或相减)的和(差)再与除数相除,余数不变。这个是很好证明的。

以此定理为依据,如果n2是3的倍数,n1+n2就依然满足除以3余2。同理,如果n3也是3的倍数,那么n1+n2+n3的和就满足除以3余2。这是从n1的角度考虑的,再从n2,n3的角度出发,我们可推导出以下三点:

  1. 为使n1+n2+n3的和满足除以3余2,n2和n3必须是3的倍数。
  2. 为使n1+n2+n3的和满足除以5余3,n1和n3必须是5的倍数。
  3. 为使n1+n2+n3的和满足除以7余2,n1和n2必须是7的倍数。

因此,为使n1+n2+n3的和作为“孙子问题”的一个最终解,需满足:

  1. n1除以3余2,且是5和7的公倍数。
  2. n2除以5余3,且是3和7的公倍数。
  3. n3除以7余2,且是3和5的公倍数。

所以,孙子问题解法的本质是从5和7的公倍数中找一个除以3余2的数n1,从3和7的公倍数中找一个除以5余3的数n2,从3和5的公倍数中找一个除以7余2的数n3,再将三个数相加得到解。在求n1,n2,n3时又用了一个小技巧,以n1为例,并非从5和7的公倍数中直接找一个除以3余2的数,而是先找一个除以3余1的数,再乘以2。

这里又有一个数学公式,如果a%b=c,那么(a*k)%b=a%b+a%b+…+a%b=c+c+…+c=kc(k>0),也就是说,如果一个除法的余数为c,那么被除数的k倍与除数相除的余数为kc。展开式中已证明。

最后,我们还要清楚一点,n1+n2+n3只是问题的一个解,并不是最小的解。如何得到最小解?我们只需要从中最大限度的减掉掉3,5,7的公倍数105即可。道理就是前面讲过的定理“如果a%b=c,则有(a-kb)%b=c”。所以(n1+n2+n3)%105就是最终的最小解。

总结

   经过分析发现,中国剩余定理的孙子解法并没有什么高深的技巧,就是以下两个基本数学定理的灵活运用:

  1. 如果 a%b=c , 则有 (a+kb)%b=c (k为非零整数)。
  2. 如果 a%b=c,那么 (a*k)%b=kc (k为大于零的整数)。

POJ1006: 中国剩余定理的完美演绎的更多相关文章

  1. [转]POJ1006: 中国剩余定理的完美演绎

    Biorhythms Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 117973   Accepted: 37026 Des ...

  2. POJ1006: 中国剩余定理的完美演绎(非原创)

    问题描述 人自出生起就有体力,情感和智力三个生理周期,分别为23,28和33天.一个周期内有一天为峰值,在这一天,人在对应的方面(体力,情感或智力)表现最好.通常这三个周期的峰值不会是同一天.现在给出 ...

  3. Biorhythms(poj1006+中国剩余定理)

    Biorhythms Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 117973   Accepted: 37026 Des ...

  4. poj1006 中国剩余定理&&中国剩余定理解析

    poj 1006 题的思路不是很难的,可以转化数学式: 现设 num 是下一个相同日子距离开始的天数 p,e,i,d 如题中所设! 那么就可以得到三个式子:( num + d ) % 23 == p: ...

  5. poj1006生理周期(中国剩余定理)

    /* 中国剩余定理可以描述为: 若某数x分别被d1..….dn除得的余数为r1.r2.….rn,则可表示为下式: x=R1r1+R2r2+…+Rnrn+RD 其中R1是d2.d3.….dn的公倍数,而 ...

  6. POJ1006 - Biorhythms(中国剩余定理)

    题目大意 略...有中文... 题解 就是解同余方程组 x≡(p-d)(mod 23) x≡(e-d)(mod 28) x≡(i-d)(mod 33) 最简单的中国剩余定理应用.... 代码: #in ...

  7. poj1006 ( hdu1370 ):中国剩余定理裸题

    裸题,没什么好说的 第一个中国剩余定理 写暴力都过了..可见这题有多水 代码: #include<iostream> #include<stdio.h> #include< ...

  8. [POJ1006]生理周期 (中国剩余定理)

    蒟蒻并不会中国剩余定理 交的时候还出现了PE的错误 下面是AC代码 #include<iostream> #include<cstdio> using namespace st ...

  9. 【学习笔记-中国剩余定理】POJ1006 Biorhythms

    Biorhythms Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 139500   Accepted: 44772 Des ...

随机推荐

  1. Python从入门到放弃

    计算机基础 01 计算机基础之编程 02 计算机组成原理 03 计算机操作系统 04 编程语言分类 Python解释器 05 Python和Python解释器 06 执行Python程序的两种方式 0 ...

  2. 开源)嗨,Java,你可以生成金山词霸的二维码分享海报吗?

    As long as you can still grab a breath, you fight.只要一息尚存,就不得不战. 有那么一段时间,我特别迷恋金山词霸的每日一句分享海报.因为不仅海报上的图 ...

  3. 小白学习Python之路---re模块学习和挑战练习

    本节大纲: 1.正则表达式 2.re模块的学习 3.速记理解技巧 4.挑战练习--开发一个简单的python计算器 5.心得总结 6.学习建议 正则表达式: 正则表达式,又称规则表达式.(英语:Reg ...

  4. 负载,性能测试工具-Gatling

    前言 Gatling Gatling是一款功能强大的负载测试工具,它为易于使用,高可维护性和高性能而设计. 开箱即用,Gatling由于对HTTP协议的出色支持,使其成为负载测试任何HTTP服务器的首 ...

  5. asp.net core系列 52 Identity 其它关注点

    一.登录分析 在使用identity身份验证登录时,在login中调用的方法是: var result = await _signInManager.PasswordSignInAsync(Input ...

  6. C#工具:WebAPI常见问题及解决方案

    Web.config中连接字符串配置问题解决方法:<ConnectionStrings>中<add>的providerName写错正确写法:providerName=" ...

  7. 03. Redis-配置文件

    redis-3.2.6配置文件 主要修改配置文件几个大方面: 端口 port 安全: bind ip 绑定监听IP 安全模式开启与否 protected-mode 一般设置yes 访问密码 requi ...

  8. Docker 创建 Crowd3.3.2 以及打通 Jira Software7.12.3和Confluence6.12.2 SSO 单点登录

    目录 目录 1.介绍 1.1.什么是Crowd? 2.Crowd 的官网在哪里? 3.如何下载安装? 4.对 Crowd 进行配置 4.1.破解 Crowd 第一步 4.2.破解 Crowd 第二步, ...

  9. SQL Server 创建跨库查詢、修改、增加、删除

    一.通过SQL语句访问远程数据库   --OPENROWSET函数 使用OPENROWSET()是个不错的选择,也可以用做跨库查询包括增.删.改.查 下面就来介绍一下OPENROWSET函数的运用 包 ...

  10. 3星|路江涌《共演战略画布》:PPT技巧级别的创新,缺实际分析案例

    作者用自己的思路综合现有各种战略思想,给出企业各阶段各要素的战略分析工具.主要是2*2矩阵和双S曲线两种工具. 从书中的插图来看,这些工具在PPT演示中效果应该会不错. 作者在书中用这些工具做的分析不 ...