下面的示例说明了如何使用 FFT 函数进行频谱分析。FFT 的一个常用场景是确定一个时域噪声信号的频率分量。

首先创建一些数据。假设是以 1000 Hz 的频率对数据进行的采样。首先为数据构造一条时间轴,时间范围从 t = 0 至 t = 0.25,步长为 1 毫秒。然后,创建一个包含 50 Hz 和 120 Hz 频率的正弦波信号 x。

t = 0:.001:.25;
x = sin(2*pi*50*t) + sin(2*pi*120*t);

添加一些标准差为 2 的随机噪声以产生噪声信号 y。然后,通过对该噪声信号 y 绘图来了解该信号。

y = x + 2*randn(size(t));
plot(y(1:50))
title('Noisy time domain signal')

很明显,通过观察该信号很难确定频率分量;这就是频谱分析为什么被广泛应用的原因。

得到带噪声信号 y 的离散傅里叶变换很容易;执行快速傅里叶变换 (FFT) 即可实现。

Y = fft(y,251);

使用复数共扼 (CONJ) 计算功率频谱密度,即测量不同频率下的能量。为前 127 个点构造一个频率轴,并使用该轴绘制结果图形。(其余的点是对称的。)

Pyy = Y.*conj(Y)/251;
f = 1000/251*(0:127);
plot(f,Pyy(1:128))
title('Power spectral density')
xlabel('Frequency (Hz)')

放大并仅绘制上限为 200 Hz 的图形。请注意 50 Hz 和 120 Hz 下的峰值。以下是原始信号的频率。

plot(f(1:50),Pyy(1:50))
title('Power spectral density')
xlabel('Frequency (Hz)')

关注公众号: MATLAB基于模型的设计 (ID:xaxymaker) ,每天推送MATLAB学习最常见的问题,每天进步一点点,业精于勤荒于嬉

打开微信扫一扫哦!

使用 FFT 进行频谱分析的更多相关文章

  1. 使用FFT进行频谱分析

    import numpy as np import matplotlib.pyplot as plt from scipy.fftpack import fft fs=100 #采样频率 N=128 ...

  2. 离散信号MATLAB频谱分析程序

    from http://blog.csdn.net/u012129372/article/details/26565611 %FFT变换,获得采样数据基本信息,时域图,频域图 %这里的向量都用行向量, ...

  3. 用MATLAB对信号做频谱分析

    1.首先学习下傅里叶变换的东西.学高数的时候老师只是将傅里叶变换简单的说了下,并没有深入的讲解.而现在看来,傅里叶变换似乎是信号处理的方面的重点只是呢,现在就先学习学习傅里叶变换吧. 上面这幅图在知乎 ...

  4. MATLAB中FFT的使用方法

    MATLAB中FFT的使用方法 说明:以下资源来源于<数字信号处理的MATLAB实现>万永革主编 一.调用方法X=FFT(x):X=FFT(x,N):x=IFFT(X);x=IFFT(X, ...

  5. FFT的分析以及matlab实验

    FFT(Fast Fourier Transformation),即为快速傅氏变换,是离散傅氏变换(DFT)的快速算法. 采样得到的数字信号,做FFT变换,N个采样点,经过FFT之后,就可以得到N个点 ...

  6. 数字信号处理--FFT

    FFT是离散傅立叶变换的快速算法,可以将一个信号变换到频域.有些信号在时域上是很难看出什么特征的,但是如果变换到频域之后,就很容易看出特征了.这就是很多信号分析采用FFT变换的原因.另外,FFT可以将 ...

  7. FFT的物理意义

    来源:学步园 FFT(Fast Fourier Transform,快速傅立叶变换)是离散傅立叶变换的快速算法,也是我们在数字信号处理技术中经常会提到的一个概念.在大学的理工科课程中,在完成高等数学的 ...

  8. FFT结果的物理意义

    图像的频率是表征图像中灰度变化剧烈程度的指标,是灰度在平面空间上的梯度.如:大面积的沙漠在图像中是一片灰度变化缓慢的区域,对应的频率值很低:而对 于地表属性变换剧烈的边缘区域在图像中是一片灰度变化剧烈 ...

  9. FS,FT,DFS,DTFT,DFT,FFT的联系和区别

    DCT变换的原理及算法 文库介绍 对于初学数字信号处理(DSP)的人来说,这几种变换是最为头疼的,它们是数字信号处理的理论基础,贯穿整个信号的处理. 学习过<高等数学>和<信号与系统 ...

随机推荐

  1. 主成分分析PCA详解

    转载请声明出处:http://blog.csdn.net/zhongkelee/article/details/44064401 一.PCA简介 1. 相关背景 上完陈恩红老师的<机器学习与知识 ...

  2. DOS系统常用命令

    前言: DOS命令是DOS操作系统使用的命令.DOS操作系统是一种磁盘操作系统,从Windows95.98到今天的Windows10都内置有DOS操作系统.可以通过"win+R", ...

  3. MonolithFirst

    As I hear stories about teams using a microservices architecture, I've noticed a common pattern. Alm ...

  4. When to use next() and return next() in Node.js

    Some people always write return next() is to ensure that the execution stops after triggering the ca ...

  5. 关于<input type="date">这种取值的问题 【原创】

    举例 <input type="date" id="date1"> var num = $("#date1").val(); a ...

  6. 你不知道的JavaScript--Item23 定时器的合理使用

    1.定时器概述 window对象提供了两个方法来实现定时器的效果,分别是window.setTimeout()和window.setInterval.其中前者可以使一段代码在指定时间后运行:而后者则可 ...

  7. 用php过滤文字中的表情字符

    很多时候,如果文字中夹带表情,那么这些文字的处理就会出现问题,例如,如果一个用户的昵称带有表情,那么我怎么把这个昵称转换为拼音呢?在实际的开发中,我遇到了这个个问题,先是找到了 https://git ...

  8. Elasticsearch笔记八之脑裂

    Elasticsearch笔记八之脑裂 概述: 一个正常es集群中只有一个主节点,主节点负责管理整个集群,集群的所有节点都会选择同一个节点作为主节点所以无论访问那个节点都可以查看集群的状态信息. 而脑 ...

  9. 解决linux netcore https请求使用自签名证书忽略安全检查方法

    当前系统环境:centos7 x64. dotnet 2.0. 不管是 ServicePointManager.ServerCertificateValidationCallback = (a, b, ...

  10. python+appium 查找某个元素find_element()并click()点击,正向判断与反判断的方法封装

    使用场景: 在自动化测试过程中,难免会用到反判断,包括异常情况的处理,比如:find_element_by_name('测试') 判断"测试"是否存在,存在则点击,不存在则执行其他 ...