Luogu4137:Rmq Problem/mex
题面
Sol
这题可能是假的
离线莫队搞一搞,把数字再分块搞一搞,就行了
# include <bits/stdc++.h>
# define IL inline
# define RG register
# define Fill(a, b) memset(a, b, sizeof(a))
using namespace std;
typedef long long ll;
const int _(2e5 + 5);
IL ll Input(){
RG char c = getchar(); RG ll x = 0, z = 1;
for(; c < '0' || c > '9'; c = getchar()) z = c == '-' ? -1 : 1;
for(; c >= '0' && c <= '9'; c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48);
return x * z;
}
int n, q, bl[_], val[_], ans[_], cnt[_], sum[_];
struct Qry{
int l, r, id;
IL bool operator <(RG Qry B) const{
return bl[l] != bl[B.l] ? bl[l] < bl[B.l] : r < B.r;
}
} qry[_];
IL void Modify(RG int x, RG int d){
if(d > 0){
if(!cnt[x]) ++sum[x / 500];
++cnt[x];
}
else{
--cnt[x];
if(!cnt[x]) --sum[x / 500];
}
}
IL int Calc(){
RG int ret = 0;
for(RG int i = 0; ; ++i)
for(RG int j = 0; j < 500 && sum[i] != 500; ++j)
if(!cnt[i * 500 + j]) return i * 500 + j;
}
int main(RG int argc, RG char* argv[]){
n = Input(); q = Input();
RG int blo = sqrt(n);
for(RG int i = 1; i <= n; ++i){
val[i] = Input();
bl[i] = (i - 1) / blo + 1;
}
for(RG int i = 1; i <= q; ++i) qry[i] = (Qry){Input(), Input(), i};
sort(qry + 1, qry + q + 1);
for(RG int L = qry[1].l, R = qry[1].l - 1, i = 1; i <= q; ++i){
while(L < qry[i].l) Modify(val[L], -1), ++L;
while(L > qry[i].l) --L, Modify(val[L], 1);
while(R < qry[i].r) ++R, Modify(val[R], 1);
while(R > qry[i].r) Modify(val[R], -1), --R;
ans[qry[i].id] = Calc();
}
for(RG int i = 1; i <= q; ++i) printf("%d\n", ans[i]);
return 0;
}
Luogu4137:Rmq Problem/mex的更多相关文章
- 【Luogu4137】Rmq Problem/mex (莫队)
[Luogu4137]Rmq Problem/mex (莫队) 题面 洛谷 题解 裸的莫队 暴力跳\(ans\)就能\(AC\) 考虑复杂度有保证的做法 每次计算的时候把数字按照大小也分块 每次就枚举 ...
- 【luogu4137】 Rmq Problem / mex - 莫队
题目描述 有一个长度为n的数组{a1,a2,…,an}.m次询问,每次询问一个区间内最小没有出现过的自然数. 思路 莫队水过去了 233 #include <bits/stdc++.h> ...
- 主席树||可持久化线段树+离散化 || 莫队+分块 ||BZOJ 3585: mex || Luogu P4137 Rmq Problem / mex
题面:Rmq Problem / mex 题解: 先离散化,然后插一堆空白,大体就是如果(对于以a.data<b.data排序后的A)A[i-1].data+1!=A[i].data,则插一个空 ...
- 分块+莫队||BZOJ3339||BZOJ3585||Luogu4137||Rmq Problem / mex
题面:P4137 Rmq Problem / mex 题解:先莫队排序一波,然后对权值进行分块,找出第一个没有填满的块,直接for一遍找答案. 除了bzoj3339以外,另外两道题Ai范围都是1e9. ...
- BZOJ 3339 && luogu4137 Rmq Problem / mex(莫队)
P4137 Rmq Problem / mex 题目描述 有一个长度为n的数组{a1,a2,-,an}.m次询问,每次询问一个区间内最小没有出现过的自然数. 输入输出格式 输入格式: 第一行n,m. ...
- BZOJ3339&&3585 Rmq Problem&&mex
BZOJ3339&&3585:Rmq Problem&&mex Description 有一个长度为n的数组{a1,a2,...,an}.m次询问,每次询问一个区间内最 ...
- P4137 Rmq Problem / mex (莫队)
题目 P4137 Rmq Problem / mex 解析 莫队算法维护mex, 往里添加数的时候,若添加的数等于\(mex\),\(mex\)就不能等于这个值了,就从这个数开始枚举找\(mex\): ...
- 洛谷 P4137 Rmq Problem /mex 解题报告
P4137 Rmq Problem /mex 题意 给一个长为\(n(\le 10^5)\)的数列\(\{a\}\),有\(m(\le 10^5)\)个询问,每次询问区间的\(mex\) 可以莫队然后 ...
- [bzoj3585] Rmq Problem / mex
[bzoj3585] Rmq Problem / mex bzoj luogu 看上一篇博客吧,看完了这个也顺理成章会了( (没错这篇博客就是这么水) #include<cstdio> # ...
随机推荐
- javamail+ical4j发送会议提醒
本篇讲述小编在使用ical4j时对其的理解与使用,留作笔记的同时希望能帮助到大家! 初学者可以先了解下ical4j的基本信息: iCalender编程基础,了解与使用ical4j:https://ww ...
- Spring-mvc 静态资源不拦截
在Spring-mvc.xml文件中加入这个就可以了 <!-- 用于对静态文件进行解析 --> <mvc:annotation-driven /> <mvc:resour ...
- 合唱团 (线性dp)
题意:有 n 个学生站成一排,每个学生有一个能力值,牛牛想从这 n 个学生中按照顺序选取 k 名学生,要求相邻两个学生的位置编号的差不超过 d,使得这 k 个学生的能力值的乘积最大,你能返回最大的乘积 ...
- hdu 2047递推
A[N]表示以E或者F结尾的情况下的方案数,B[N]表示以O结尾的情况下的方案数,F[N]=3*A[N-1]+2*B[N-1] 同时,A[N]=2*B[N-1]+2*A[N-1],B[N-1]=A[N ...
- UVA - 1371 Period 二分+dp
思路:设字符串x的长度为n,y的长度为m,那么答案一定在[0, m]之间,那么可以二分求答案. d(i, j)表示第一个串前i个字符至少需要经过多少次才能的到第二个串的前j个字符,转移方程d(i, j ...
- Codeforces348C - Subset Sums
Portal Description 给出长度为\(n(n\leq10^5)\)的序列\(\{a_n\}\)以及\(m(m\leq10^5)\)个下标集合\(\{S_m\}(\sum|S_i|\leq ...
- 一个逼格很低的appium自动化测试框架
Github地址: https://github.com/wuranxu 使用说明 1. 安装配置Mongo数据库 下载地址 mongo是用来存放元素定位的,截图如下: 通过case_id区分每个ca ...
- jVM笔记4-对象的结构
1.对象的结构有: 1.Header(对象头),其组成主要有两部分: 1.自身运行时的数据(Mark Word),包括: 1.哈希值 2.GC分代年龄. 3.锁状态标志 4.线程所持有的锁 5.偏向线 ...
- 放大倍数超5万倍的Memcached DDoS反射攻击,怎么破?
欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 作者:腾讯游戏云 背景:Memcached攻击创造DDoS攻击流量纪录 近日,利用Memcached服务器实施反射DDoS攻击的事件呈大幅上 ...
- FusionCharts封装-单系列图
ColumnChart.java: /** * @Title:ColumnChart.java * @Package:com.fusionchart.model * @Description:柱形图 ...