Description

  一个长度为n的数列,选一个连续子序列,使得子序列的公约数*长度最大,求这个最大值。n<=1e5。

Solution

  连续子序列一般都要用滑动窗口是吧(固定r,快速计算最优l,从r转移到r+1时无需重新计算l信息)

  对于一个r,l递减时gcd也一定递减或不变,所以gcd最多有log(a[i])种不同取值 

  那么对于每一个相同的gcd,显然只需要保存最小的l

  转移也很方便,反正最多log种元素,直接每一个暴力转移,有删除、添加、更新操作,用map来水再好不过了。

  大白例题。

Code

  不太会map...现在才知道first&second...膜了一发别人的代码...

 #include<cstdio>
#include<algorithm>
#include<cstring>
#include<map>
#define ll long long
using namespace std; map<ll,ll>a;
ll n,x,ans; ll gcd(ll x,ll y){return y==?x:gcd(y,x%y);} int main(){
int T;
scanf("%d",&T);
while(T--){
scanf("%lld",&n);
a.clear();
ans=;
for(int i=;i<=n;i++){
scanf("%lld",&x);
if(!a.count(x)) a[x]=i;
for(map<ll,ll>::iterator it=a.begin();it!=a.end();){
ll tmp=gcd(x,it->first);
ans=max(ans,tmp*(i-it->second+));
if(!a.count(tmp))
a[tmp]=it->second;
else
a[tmp]=min(a[tmp],it->second);
if(tmp<it->first)
a.erase(it++);
else it++;
}
}
printf("%lld\n",ans);
}
return ;
}

【gcd+stl】UVa1642 Magical GCD的更多相关文章

  1. 【BZOJ4052】[Cerc2013]Magical GCD 乱搞

    [BZOJ4052][Cerc2013]Magical GCD Description 给出一个长度在 100 000 以内的正整数序列,大小不超过 10^12.  求一个连续子序列,使得在所有的连续 ...

  2. CSP 201612-3 权限查询 【模拟+STL】

    201612-3 试题名称: 权限查询 时间限制: 1.0s 内存限制: 256.0MB 问题描述: 问题描述 授权 (authorization) 是各类业务系统不可缺少的组成部分,系统用户通过授权 ...

  3. 【莫比乌斯反演】BZOJ2920-YY的GCD

    [题目大意] 给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对. [思路] 太神了这道题……蒟蒻只能放放题解:戳,明早再过来看看 ...

  4. 【codeforces 798C】Mike and gcd problem

    [题目链接]:http://codeforces.com/contest/798/problem/C [题意] 给你n个数字; 要求你进行若干次操作; 每次操作对第i和第i+1个位置的数字进行; 将 ...

  5. 【bzoj4052】[Cerc2013]Magical GCD 暴力

    题目描述 给出一个长度在 100 000 以内的正整数序列,大小不超过 10^12.  求一个连续子序列,使得在所有的连续子序列中,它们的GCD值乘以它们的长度最大. 样例输入 1 5 30 60 2 ...

  6. 【BZOJ 2820】 YY的GCD (莫比乌斯+分块)

    YY的GCD   Description 神犇YY虐完数论后给傻×kAc出了一题 给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少 ...

  7. 【刷题】HDU 1695 GCD

    Problem Description Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD( ...

  8. 【Luogu P2257】YY 的 GCD

    题目 求: \[ \sum_{i = 1}^n \sum_{j = 1}^m [\gcd(i, j) \in \mathbb P] \] 有 \(T\) 组数据, \(T\le 10^4, n, m\ ...

  9. 【BZOJ 2820】YY的GCD

    线性筛积性函数$g(x)$,具体看Yveh的题解: http://sr16.com:8081/%e3%80%90bzoj2820%e3%80%91yy%e7%9a%84gcd/ #include< ...

随机推荐

  1. ORACLE 博客文章目录

    从接触ORACLE到深入学习,已有好几年了,虽然写的博客不多,质量也参差不齐,但是,它却是成长的历程的点点滴滴的一个见证,见证了我在这条路上的寻寻觅觅,朝圣的心路历程,现在将ORACLE方面的博客整理 ...

  2. STOMP协议规范

    原文: STOMP Protocol Specification, Version 1.2 摘要 STOMP是一个简单的可互操作的协议, 被用于通过中间服务器在客户端之间进行异步消息传递.它定义了一种 ...

  3. Spark核心编程---创建RDD

    创建RDD: 1:使用程序中的集合创建RDD,主要用于进行测试,可以在实际部署到集群运行之前,自己使用集合构造测试数据,来测试后面的spark应用流程. 2:使用本地文件创建RDD,主要用于临时性地处 ...

  4. python命令行使用的问题

    python命令行使用的时候要注意一个陷阱,就是如果某个语句不是在>>>下执行的,而是在...下执行的,那么它可能没有执行成功. 例如如下没有成功,原因是上面有一句注释,导致没有执行 ...

  5. Python 函数和相关用法笔记

    python中%r和%s的区别 总结:%r打印时能够重现它所代表的对象 __str__和__repr__的用法

  6. python奇技淫巧——max/min函数的用法

    本文以max()为例,对min/max内建函数进行说明 源码 def max(*args, key=None): # known special case of max ""&qu ...

  7. Python 描述符是什么?以及如何实现

    先看一个例子,@property.被@property修饰的成员函数,将变为一个描述符.这是最简单的创建描述符的方式. class Foo: @property def attr(self): pri ...

  8. Python_csv电子表格

    import csv with open('test.csv','w',newline='')as fp: test_writer=csv.writer(fp,delimiter=' ',quotec ...

  9. 0516js综合练习

    <!DOCTYPE html><html>    <head>        <meta charset="UTF-8">      ...

  10. python 序列化及其相关模块(json,pickle,shelve,xml)详解

    什么是序列化对象? 我们把对象(变量)从内存中编程可存储或传输的过程称之为序列化,在python中称为pickle,其他语言称之为serialization ,marshalling ,flatter ...