BZOJ_3629_[JLOI2014]聪明的燕姿_dfs
BZOJ_3629_[JLOI2014]聪明的燕姿_dfs
Description
Input
Output
Sample Input
Sample Output
20 26 41
HINT
对于100%的数据,有S<=2*10*9
首先有约数和公式:
$\sigma(n)=(p_{1}^0+p_{1}^1+p_{1}^2+…p_{1}^{k1})
(p_{2}^0+p_{2}^1+p_{2}^2+…p_{2}^{k2})…(p_{w}^0+p_{w}^1+p_{w}^2+…p_{w}^{kw})$
我们先筛出$\sqrt(n)$以内的质数,然后枚举每个质数的幂数进行搜索,但这样可能有一些大质数被漏掉了。
于是需要每次检查一下S除剩下来的数是不是质数。
再加上一些剪枝就过掉啦。
代码:
/**************************
orz popoqqq
***************************/
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <map>
using namespace std;
#define maxn 2000000000
typedef long long ll;
int prime[50005],cnt,vis[100050];
int n;
ll ans[1000050];
void init() {
int i,j;vis[1]=1;
for(i=2;i<=100000;i++) {
if(!vis[i]) {
prime[++cnt]=i;
}
for(j=1;j<=cnt&&i*prime[j]<=100000;j++) {
vis[i*prime[j]]=1;
if(i%prime[j]==0) break;
}
}
}
bool judge(ll x) {
if(x<=100000) return !vis[x];
int i;
for(i=1;1ll*prime[i]*prime[i]<=x;i++) if(x%prime[i]==0) return 0;
return 1;
}
void dfs(int dep,ll num,ll lft) {
if(lft==1) {
ans[++ans[0]]=num; return ;
}
if(lft-1>=prime[dep]&&judge(lft-1)) {
ans[++ans[0]]=(lft-1)*num;
}
int i;
for(i=dep;prime[i]*prime[i]<=lft;i++) {
ll re=prime[i]+1,po=prime[i];
for(;re<=lft;po*=prime[i],re+=po) {
if(lft%re==0) {
dfs(i+1,num*po,lft/re);
}
}
}
}
int main() {
init();
while(scanf("%d",&n)!=EOF) {
ans[0]=0; dfs(1,1,n);
sort(ans+1,ans+ans[0]+1);
int i;printf("%lld\n",ans[0]);
if(ans[0]){for(i=1;i<=ans[0];i++) printf("%lld ",ans[i]); puts("");}
}
}
BZOJ_3629_[JLOI2014]聪明的燕姿_dfs的更多相关文章
- bzoj3629 / P4397 [JLOI2014]聪明的燕姿
P4397 [JLOI2014]聪明的燕姿 根据唯一分解定理 $n=q_{1}^{p_{1}}*q_{2}^{p_{2}}*q_{3}^{p_{3}}*......*q_{m}^{p_{m}}$ 而$ ...
- P4397 [JLOI2014]聪明的燕姿
P4397 [JLOI2014]聪明的燕姿 题目背景 阴天傍晚车窗外 未来有一个人在等待 向左向右向前看 爱要拐几个弯才来 我遇见谁会有怎样的对白 我等的人他在多远的未来 我听见风来自地铁和人海 我排 ...
- 【LG4397】[JLOI2014]聪明的燕姿
[LG4397][JLOI2014]聪明的燕姿 题面 洛谷 题解 考虑到约数和函数\(\sigma = \prod (1+p_i+...+p_i^{r_i})\),直接爆搜把所有数搜出来即可. 爆搜过 ...
- [JLOI2014]聪明的燕姿(搜索)
城市中人们总是拿着号码牌,不停寻找,不断匹配,可是谁也不知道自己等的那个人是谁. 可是燕姿不一样,燕姿知道自己等的人是谁,因为燕姿数学学得好!燕姿发现了一个神奇的算法:假设自己的号码牌上写着数字 S, ...
- bzoj 3629 [JLOI2014]聪明的燕姿(约数和,搜索)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3629 [题意] 给定S,找出所有约数和为S的数. [思路] 若n=p1^a1*p2^a ...
- bzoj3629[JLOI2014]聪明的燕姿
http://www.lydsy.com/JudgeOnline/problem.php?id=3629 搜索. 我们知道: 如果$N=\prod\limits_{i=1}^{m}p_{i}^{k_{ ...
- [BZOJ 3629][ JLOI2014 ]聪明的燕姿
这道题考试选择打表,完美爆零.. 算数基本定理: 任何一个大于1的自然数N,都可以唯一分解成有限个质数的乘积N=P₁^a₁ P₂^a₂…Pn^an,这里P₁<P₂<…<Pn均为质数, ...
- bzoj千题计划297:bzoj3629: [JLOI2014]聪明的燕姿
http://www.lydsy.com/JudgeOnline/problem.php?id=3629 约数和定理: 若n的标准分解式为 p1^k1 * p2^k2 …… 那么n的约数和= π (Σ ...
- 2018.09.11 bzoj3629: [JLOI2014]聪明的燕姿(搜索)
传送门 一道神奇的搜索. 直接枚举每个质因数的次数,然后搜索就行了. 显然质因数k次数不超过logkn" role="presentation" style=" ...
随机推荐
- IT轮子系列(二)——mvc API 说明文档的自动生成——Swagger的使用(一)
这篇文章主要介绍如何使用Swashbuckle插件在VS 2013中自动生成MVC API项目的说明文档.为了更好说明的swagger生成,我们从新建一个空API项目开始. 第一步.新建mvc api ...
- Windows ML,系统内置的机器学习平台初探
人工智能现在很火,虽然最近风头隐隐有被区块链盖过,但仍是未来技术转型的首选方向之一.作为AI核心的机器学习,目前也进化到了可以基于平台自动训练模型的地步,例如Azure Machine Learnin ...
- 解决ubuntu unity下gvim菜单消失的问题
#问题描述:在终端下用gvim 指令打开 gvim就不显示菜单.在不启用unity的桌面环境下用终端打开gvim是有菜单的.从程序菜单中打开gvim是显示菜单的.用sudo打开gvim也可以显示菜单, ...
- Win7下 Python中文正则的奇异表现
首先贴Win32下的直接Python shell下的测试结果: Python 2.7.6 (default, Nov 10 2013, 19:24:18) [MSC v.1500 32 bit (In ...
- DDGScreenShot—图片擦除功能
写在前面 图片擦除功能,也是运用图片的绘制功能, 将图片绘制后,拿到相应的图片.当然,有一涨底图更明显 实现代码如下 /** ** 用手势擦除图片 - imageView --传图片 - bgView ...
- java数据库(MySQL)之增删改查
1.查询数据 先救从简单的来吧,之前我们实现了将数据库表格信息读取到一个List集合中,数据库的查询,实 际上就是对这个集合的查询: public class Show { public static ...
- 谣传QQ被黑客DDOS攻击,那么Python如何实现呢?
于2018-5-10日晚 网络流传黑客DDOS攻击了QQ服务器,导致大家聊天发送内容时出现感叹号.我们都知道一般情况下出现感叹号都是你的网络不稳定,或者...别人已经删除你了.然而昨晚很奇怪,发出的内 ...
- LinkedList源码
1.介绍及注意事项 链表由Josh Bloch书写,属于Java集合框架中的一种,LinkedList实现的是双链表,实现了所有的链表操作,可能够实现所有元素(包括)的基本操作. 链表是非线程同步的, ...
- 常用域名记录解释:A记录、MX记录、CNAME记录、TXT记录、AAAA记录、NS记录
A记录 A记录是用来创建到IP地址的记录. A记录设置技巧 1.如果想创建不带www的记录,即ezloo.com,在主机记录中填写@或者留空,不同的注册商可能不一样. 2.创建多个域名到同一个IP,比 ...
- app电量测试
一.测试前准备 样本A:商家端2.6.4版本为基准样本(即旧版本): 样本B:商家端2.6.5版本(未正式上线,可找RD协助打包): 推荐Android 5.0及以上手机2台或多台(根据RD本次测试需 ...