BZOJ_3629_[JLOI2014]聪明的燕姿_dfs
BZOJ_3629_[JLOI2014]聪明的燕姿_dfs
Description
Input
Output
Sample Input
Sample Output
20 26 41
HINT
对于100%的数据,有S<=2*10*9
首先有约数和公式:
$\sigma(n)=(p_{1}^0+p_{1}^1+p_{1}^2+…p_{1}^{k1})
(p_{2}^0+p_{2}^1+p_{2}^2+…p_{2}^{k2})…(p_{w}^0+p_{w}^1+p_{w}^2+…p_{w}^{kw})$
我们先筛出$\sqrt(n)$以内的质数,然后枚举每个质数的幂数进行搜索,但这样可能有一些大质数被漏掉了。
于是需要每次检查一下S除剩下来的数是不是质数。
再加上一些剪枝就过掉啦。
代码:
/**************************
orz popoqqq
***************************/
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <map>
using namespace std;
#define maxn 2000000000
typedef long long ll;
int prime[50005],cnt,vis[100050];
int n;
ll ans[1000050];
void init() {
int i,j;vis[1]=1;
for(i=2;i<=100000;i++) {
if(!vis[i]) {
prime[++cnt]=i;
}
for(j=1;j<=cnt&&i*prime[j]<=100000;j++) {
vis[i*prime[j]]=1;
if(i%prime[j]==0) break;
}
}
}
bool judge(ll x) {
if(x<=100000) return !vis[x];
int i;
for(i=1;1ll*prime[i]*prime[i]<=x;i++) if(x%prime[i]==0) return 0;
return 1;
}
void dfs(int dep,ll num,ll lft) {
if(lft==1) {
ans[++ans[0]]=num; return ;
}
if(lft-1>=prime[dep]&&judge(lft-1)) {
ans[++ans[0]]=(lft-1)*num;
}
int i;
for(i=dep;prime[i]*prime[i]<=lft;i++) {
ll re=prime[i]+1,po=prime[i];
for(;re<=lft;po*=prime[i],re+=po) {
if(lft%re==0) {
dfs(i+1,num*po,lft/re);
}
}
}
}
int main() {
init();
while(scanf("%d",&n)!=EOF) {
ans[0]=0; dfs(1,1,n);
sort(ans+1,ans+ans[0]+1);
int i;printf("%lld\n",ans[0]);
if(ans[0]){for(i=1;i<=ans[0];i++) printf("%lld ",ans[i]); puts("");}
}
}
BZOJ_3629_[JLOI2014]聪明的燕姿_dfs的更多相关文章
- bzoj3629 / P4397 [JLOI2014]聪明的燕姿
P4397 [JLOI2014]聪明的燕姿 根据唯一分解定理 $n=q_{1}^{p_{1}}*q_{2}^{p_{2}}*q_{3}^{p_{3}}*......*q_{m}^{p_{m}}$ 而$ ...
- P4397 [JLOI2014]聪明的燕姿
P4397 [JLOI2014]聪明的燕姿 题目背景 阴天傍晚车窗外 未来有一个人在等待 向左向右向前看 爱要拐几个弯才来 我遇见谁会有怎样的对白 我等的人他在多远的未来 我听见风来自地铁和人海 我排 ...
- 【LG4397】[JLOI2014]聪明的燕姿
[LG4397][JLOI2014]聪明的燕姿 题面 洛谷 题解 考虑到约数和函数\(\sigma = \prod (1+p_i+...+p_i^{r_i})\),直接爆搜把所有数搜出来即可. 爆搜过 ...
- [JLOI2014]聪明的燕姿(搜索)
城市中人们总是拿着号码牌,不停寻找,不断匹配,可是谁也不知道自己等的那个人是谁. 可是燕姿不一样,燕姿知道自己等的人是谁,因为燕姿数学学得好!燕姿发现了一个神奇的算法:假设自己的号码牌上写着数字 S, ...
- bzoj 3629 [JLOI2014]聪明的燕姿(约数和,搜索)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3629 [题意] 给定S,找出所有约数和为S的数. [思路] 若n=p1^a1*p2^a ...
- bzoj3629[JLOI2014]聪明的燕姿
http://www.lydsy.com/JudgeOnline/problem.php?id=3629 搜索. 我们知道: 如果$N=\prod\limits_{i=1}^{m}p_{i}^{k_{ ...
- [BZOJ 3629][ JLOI2014 ]聪明的燕姿
这道题考试选择打表,完美爆零.. 算数基本定理: 任何一个大于1的自然数N,都可以唯一分解成有限个质数的乘积N=P₁^a₁ P₂^a₂…Pn^an,这里P₁<P₂<…<Pn均为质数, ...
- bzoj千题计划297:bzoj3629: [JLOI2014]聪明的燕姿
http://www.lydsy.com/JudgeOnline/problem.php?id=3629 约数和定理: 若n的标准分解式为 p1^k1 * p2^k2 …… 那么n的约数和= π (Σ ...
- 2018.09.11 bzoj3629: [JLOI2014]聪明的燕姿(搜索)
传送门 一道神奇的搜索. 直接枚举每个质因数的次数,然后搜索就行了. 显然质因数k次数不超过logkn" role="presentation" style=" ...
随机推荐
- jQuery学习小结
1.jQuery hide() 和 show() 通过 jQuery,您可以使用 hide() 和 show() 方法来隐藏和显示 HTML 元素: $("#hide").clic ...
- Centos 7 卸载自带的openjdk
[root@localhost ~]# rpm -qa|grep jdk java-1.6.0-openjdk-1.6.0.0-1.50.1.11.5.el6_3.x86_64 java-1.7.0- ...
- jvm栈-运行控制,jvm-堆运行存储共享单元
JVM-栈 2012-09-17 15:43:53 分类: Java 原文转自:http://www.blogjava.net/nkjava/archive/2012/03/15/371971.ht ...
- ORACLE数据库维护
ORACLE数据库维护(转)----一篇关于oracle的不错的文章 1. ORACLE数据库启动与关闭 1.1 打开和关闭数据库 (手工)1.1.1 sqlplus连接 1.1.2 打开数据 ...
- 对JavaScript事件机制的一点理解
JavaScript通过事件机制实现了异步操作,这种异步操作可以使CPU可以在IO任务的等待中被释放出来处理其他任务,等待IO结束再去处理这个任务.这个是一个基本的事件机制. 那么是不是说事件从监听到 ...
- JavaScript高级程序设计(二)
一.函数 1.1 JS中函数无重载,同一作用域下定义两个函数,而不会引发错误,但真正调用的是后面定义的函数.例如: function doAdd(iNum){ alert(iNum+100); } f ...
- Python 内置的一些高效率函数用法
1. filter(function,sequence) 将sequence中的每个元素,依次传进function函数(可以自定义,返回的结果是True或者False)筛选,返回符合条件的元素,重组 ...
- Selenium2Lib库之键盘常用关键字实战
Press Key关键字 按F5 查看Press Key关键字的说明,如下图: Press Key关键字是用于通过键盘模拟由定位器确定的元素的用户按键.‘值’是单个字符,字符串或数值的ASCII码的“ ...
- 杨老师课堂之JavaScript定时器_农夫山泉限时秒杀案例
预览效果图: 使用到的知识点: 定时器 setInterval(函数,毫秒):在指定的毫秒数后调用函数或执行一段代码 取消定时器 clearInterval:取消由setInterval设置的定时器 ...
- 3个简单CSS实现的动态效果
这里只是鼠标移入的时候出现的动态效果,并没有使用CSS的动画属性animation和变形属性transform.后面再补... HTML代码如下: <!DOCTYPE html><h ...