bzoj 4591 [Shoi2015]超能粒子炮·改——组合数前缀和
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4591
先说说自己的想法:
从组合意义的角度考虑,从n个里选<=k个,就添加k个空位置,变成从n+k个里选k个。
其实是错的。因为选空位置的方案数重复了。
于是https://blog.csdn.net/neither_nor/article/details/51684410
其实就是写出∑C的式子,把C用lucas定理表示,发现有一堆 i%mod 相等的东西;
把它们提出来,用乘法可以加速。就像每mod个一个循环节一样。
其实s也很好预处理,因为mod太小了。s也能递归。关键可能是想到可以用s表示。
注意一下k<0的判断。还有jc、ine、jcn(后期的ine)的开始点,还有c和s的不同范围。
#include<iostream>
#include<cstdio>
#include<cstring>
#define ll long long
using namespace std;
const int mod=;
int T,ine[mod+],jc[mod+],c[mod+][mod+],s[mod+][mod+];
ll n,k;
void init()
{
ine[]=;
for(int i=;i<mod;i++)ine[i]=(mod-mod/i)*ine[mod%i]%mod;//won't use ine[0],or i doesn't have ine under %mod
ine[]=;
for(int i=;i<mod;i++)(ine[i]*=ine[i-])%=mod;
jc[]=;//from 0
for(int i=;i<mod;i++)jc[i]=jc[i-]*i%mod;
for(int i=;i<mod;i++)
for(int j=;j<mod;j++)//not j<=i!!
{
if(j<=i)c[i][j]=jc[i]*ine[j]%mod*ine[i-j]%mod;
s[i][j]=c[i][j];if(j)(s[i][j]+=s[i][j-])%=mod;
}
}
int lucas(ll n,ll m)
{
if(!m)return ;if(n<m)return ;if(n<mod&&m<mod)return c[n][m];
return lucas(n/mod,m/mod)*c[n%mod][m%mod]%mod;
}
int S(ll n,ll k)
{
if(k<)return ;if(!k)return ;//if k<0
if(n<mod&&k<mod)return s[n][k];
return (S(n/mod,k/mod-)*s[n%mod][mod-]%mod+lucas(n/mod,k/mod)*s[n%mod][k%mod])%mod;
}
int main()
{
init();
scanf("%d",&T);
while(T--)
{
scanf("%lld%lld",&n,&k);
printf("%d\n",S(n,k));
}
return ;
}
bzoj 4591 [Shoi2015]超能粒子炮·改——组合数前缀和的更多相关文章
- Bzoj 4591: [Shoi2015]超能粒子炮·改 数论,Lucas定理,排列组合
4591: [Shoi2015]超能粒子炮·改 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 178 Solved: 70[Submit][Stat ...
- bzoj 4591: [Shoi2015]超能粒子炮·改 [lucas定理]
4591: [Shoi2015]超能粒子炮·改 题意:多组询问,求 \[ S(n, k) = \sum_{i=0}^n \binom{n}{i} \mod 2333,\ k \le n \le 10^ ...
- luogu4345 [SHOI2015]超能粒子炮·改(组合数/Lucas定理)
link 输入\(n,k\),求\(\sum_{i=0}^k{n\choose i}\)对2333取模,10万组询问,n,k<=1e18 注意到一个2333这个数字很小并且还是质数这一良好性质, ...
- 【BZOJ4591】[SHOI2015]超能粒子炮·改 (卢卡斯定理)
[BZOJ4591][SHOI2015]超能粒子炮·改 (卢卡斯定理) 题面 BZOJ 洛谷 题解 感天动地!终于不是拓展卢卡斯了!我看到了一个模数,它是质数!!! 看着这个东西就感觉可以递归处理. ...
- 洛谷 P4345 [SHOI2015]超能粒子炮·改 解题报告
P4345 [SHOI2015]超能粒子炮·改 题意 求\(\sum_{i=0}^k\binom{n}{i}\),\(T\)组数据 范围 \(T\le 10^5,n,j\le 10^{18}\) 设\ ...
- bzoj4591 / P4345 [SHOI2015]超能粒子炮·改
P4345 [SHOI2015]超能粒子炮·改 题意:求$\sum_{i=1}^{k}C(n,i)\%(P=2333)$ 肯定要先拆开,不然怎么做呢(大雾) 把$C(n,i)$用$lucas$分解一下 ...
- BZOJ_4591_[Shoi2015]超能粒子炮·改_Lucas定理
BZOJ_4591_[Shoi2015]超能粒子炮·改_Lucas定理 Description 曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以 ...
- Lucas(卢卡斯)定理模板&&例题解析([SHOI2015]超能粒子炮·改)
Lucas定理 先上结论: 当p为素数: \(\binom{ N }{M} \equiv \binom{ N/p }{M/p}*\binom{ N mod p }{M mod p} (mod p)\) ...
- 【bzoj4591】[Shoi2015]超能粒子炮·改 Lucas定理
题目描述 曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以发射威力更加强大的粒子流的神秘装置.超能粒子炮·改相比超能粒子炮,在威力上有了本质的提 ...
随机推荐
- 初识python---简介,简单的for,while&if
一编程语言:编程语言是程序员与计算机沟通的介质: 编程语言的分类: 1机器语言:是用二进制代码表示的计算机能直接识别和执行的一种机器指令的集合. 优点:灵活,直接执行和速度快 ...
- Mybatis映射配置文件Mapper.xml详解
1.概述: MyBatis 的真正强大在于它的映射语句,也是它的魔力所在. 2.常用的属性 常用的几个属性: select元素:代表查询,类似的还有update.insert.delete id:这个 ...
- 第二节课-Data-driven approach:KNN和线性分类器分类图片
2017-08-12 1.图片分类是很多CV任务的基础: 2.图片分类要面临很多的问题,比如图片被遮挡,同一种动物有很多种颜色,形状等等,算法需要足够强壮: 3.所以很难直接写出程序来进行图片分类,常 ...
- php flock 使用实例
php flock 使用实例 bool flock ( resource $handle , int $operation [, int &$wouldblock ] ) flock()允许执 ...
- /var/spool/clientmqueue 爆满问题
当你使用简单的sendmail发邮件的时候,或者系统默认要发一些邮件(比如cron发的邮件)的时候,首先会把邮件拷贝到这个目录里,然后等待MTA(mail transfer agent) 来处理,MT ...
- 【atcoder】Two Sequences [arc092 D](思维题)
题目传送门:https://arc092.contest.atcoder.jp/tasks/arc092_b 这场arc好难啊...这场感觉不像正常的arc...其实这道题还可以更早写出来的,但是蒟蒻 ...
- 加和求不同的组合方式数目(dp)
描述 有n个正整数,找出其中和为t(t也是正整数)的可能的组合方式.如: n=5,5个数分别为1,2,3,4,5,t=5: 那么可能的组合有5=1+4和5=2+3和5=5三种组合方式. 输入 输入的第 ...
- PAT1021. Deepest Root (25)
之前不知道怎么判断是不是树,参考了 http://blog.csdn.net/eli850934234/article/details/8926263 但是最后有一个测试点有超时,在bfs里我用了数组 ...
- <转载>Win x86-64 - Download & execute (Generator)
#Title: Obfuscated Shellcode Windows x86/x64 Download And Execute [Use PowerShell] - Generator #leng ...
- jquery01-简介+语法+选择器+事件
jQuery是一个JavaScript函数库,是一个轻量级的"写的少,做的多"的JavaScript库,包含以下功能: HTML 元素选取 HTML 元素操作 CSS 操作 HTM ...