题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4591

先说说自己的想法:

  从组合意义的角度考虑,从n个里选<=k个,就添加k个空位置,变成从n+k个里选k个。

  其实是错的。因为选空位置的方案数重复了。

于是https://blog.csdn.net/neither_nor/article/details/51684410

其实就是写出∑C的式子,把C用lucas定理表示,发现有一堆 i%mod 相等的东西;

把它们提出来,用乘法可以加速。就像每mod个一个循环节一样。

其实s也很好预处理,因为mod太小了。s也能递归。关键可能是想到可以用s表示。

注意一下k<0的判断。还有jc、ine、jcn(后期的ine)的开始点,还有c和s的不同范围。

#include<iostream>
#include<cstdio>
#include<cstring>
#define ll long long
using namespace std;
const int mod=;
int T,ine[mod+],jc[mod+],c[mod+][mod+],s[mod+][mod+];
ll n,k;
void init()
{
ine[]=;
for(int i=;i<mod;i++)ine[i]=(mod-mod/i)*ine[mod%i]%mod;//won't use ine[0],or i doesn't have ine under %mod
ine[]=;
for(int i=;i<mod;i++)(ine[i]*=ine[i-])%=mod;
jc[]=;//from 0
for(int i=;i<mod;i++)jc[i]=jc[i-]*i%mod;
for(int i=;i<mod;i++)
for(int j=;j<mod;j++)//not j<=i!!
{
if(j<=i)c[i][j]=jc[i]*ine[j]%mod*ine[i-j]%mod;
s[i][j]=c[i][j];if(j)(s[i][j]+=s[i][j-])%=mod;
}
}
int lucas(ll n,ll m)
{
if(!m)return ;if(n<m)return ;if(n<mod&&m<mod)return c[n][m];
return lucas(n/mod,m/mod)*c[n%mod][m%mod]%mod;
}
int S(ll n,ll k)
{
if(k<)return ;if(!k)return ;//if k<0
if(n<mod&&k<mod)return s[n][k];
return (S(n/mod,k/mod-)*s[n%mod][mod-]%mod+lucas(n/mod,k/mod)*s[n%mod][k%mod])%mod;
}
int main()
{
init();
scanf("%d",&T);
while(T--)
{
scanf("%lld%lld",&n,&k);
printf("%d\n",S(n,k));
}
return ;
}

bzoj 4591 [Shoi2015]超能粒子炮·改——组合数前缀和的更多相关文章

  1. Bzoj 4591: [Shoi2015]超能粒子炮·改 数论,Lucas定理,排列组合

    4591: [Shoi2015]超能粒子炮·改 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 178  Solved: 70[Submit][Stat ...

  2. bzoj 4591: [Shoi2015]超能粒子炮·改 [lucas定理]

    4591: [Shoi2015]超能粒子炮·改 题意:多组询问,求 \[ S(n, k) = \sum_{i=0}^n \binom{n}{i} \mod 2333,\ k \le n \le 10^ ...

  3. luogu4345 [SHOI2015]超能粒子炮·改(组合数/Lucas定理)

    link 输入\(n,k\),求\(\sum_{i=0}^k{n\choose i}\)对2333取模,10万组询问,n,k<=1e18 注意到一个2333这个数字很小并且还是质数这一良好性质, ...

  4. 【BZOJ4591】[SHOI2015]超能粒子炮·改 (卢卡斯定理)

    [BZOJ4591][SHOI2015]超能粒子炮·改 (卢卡斯定理) 题面 BZOJ 洛谷 题解 感天动地!终于不是拓展卢卡斯了!我看到了一个模数,它是质数!!! 看着这个东西就感觉可以递归处理. ...

  5. 洛谷 P4345 [SHOI2015]超能粒子炮·改 解题报告

    P4345 [SHOI2015]超能粒子炮·改 题意 求\(\sum_{i=0}^k\binom{n}{i}\),\(T\)组数据 范围 \(T\le 10^5,n,j\le 10^{18}\) 设\ ...

  6. bzoj4591 / P4345 [SHOI2015]超能粒子炮·改

    P4345 [SHOI2015]超能粒子炮·改 题意:求$\sum_{i=1}^{k}C(n,i)\%(P=2333)$ 肯定要先拆开,不然怎么做呢(大雾) 把$C(n,i)$用$lucas$分解一下 ...

  7. BZOJ_4591_[Shoi2015]超能粒子炮·改_Lucas定理

    BZOJ_4591_[Shoi2015]超能粒子炮·改_Lucas定理 Description 曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以 ...

  8. Lucas(卢卡斯)定理模板&&例题解析([SHOI2015]超能粒子炮·改)

    Lucas定理 先上结论: 当p为素数: \(\binom{ N }{M} \equiv \binom{ N/p }{M/p}*\binom{ N mod p }{M mod p} (mod p)\) ...

  9. 【bzoj4591】[Shoi2015]超能粒子炮·改 Lucas定理

    题目描述 曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以发射威力更加强大的粒子流的神秘装置.超能粒子炮·改相比超能粒子炮,在威力上有了本质的提 ...

随机推荐

  1. cocos打包出现错误,执行命令出错,返回值:2。 Traceback (most recent call last): File "E:\cocos_workspace\MyGameOne\proj.android\build_native.py", line 43, in <module> build(opts.build_mode) File "E:\cocos_workspace\MyGa

    先看看NDK的版本,如果不行,就删除\proj.android\obj\local\armeabi下的文件.

  2. 【HackerRank】The Love-Letter Mystery

    James找到了他的朋友Harry要给女朋友的情书.James很爱恶作剧,所以他决定要胡搞一下.他把信中的每个单字都变成了回文.对任何给定的字符串,他可以减少其中任何一个字符的值,例如'd'可以变成' ...

  3. win10系统下载地址

    Win10正式版微软官方原版ISO系统镜像下载: Win10正式版32位简体中文版(含家庭版.专业版) 文件名: cn_windows_10_multiple_editions_x86_dvd_684 ...

  4. java写出图形界面

    1. 做出简单的窗体 package javaGUI; import java.awt.BorderLayout; import java.awt.Color; import javax.swing. ...

  5. codeforces Codeforces Round #318 div2 A. Bear and Elections 【优先队列】

    A. Bear and Elections time limit per test 1 second memory limit per test 256 megabytes input standar ...

  6. mac下安装py第三方库到python3下

    python3 -m pip install **** 中间可能碰到超时问题 python3 pip --default-timeout=100 install -U **** 设置默认超时时间即可 ...

  7. contenteditable支持度

    contenteditable attribute (basic support) - Working Draft Global user stats*: Support: 86.71% Partia ...

  8. waitpid使用的一点问题

    使用waipid的时候遇到了一个奇怪的问题,将情况简化后描述一下. 有关waitpid的基本介绍参见这里一下:http://www.cnblogs.com/mickole/p/3187770.html ...

  9. Windows 摄像头数据

    1. FFmpeg获取DirectShow设备数据(摄像头,录屏) http://blog.csdn.net/leixiaohua1020/article/details/38284961 2.

  10. rehash过程

    步骤 1) 首先创建一个比现有哈希表更大的新哈希表(expand)2) 然后将旧哈希表的所有元素都迁移到新哈希表去(rehash)   dictAdd 对字典添加元素的时候, _dictExpandI ...