The Global Aerial Research Centre has been allotted the task of building the fifth generation of mobile phone nets in Sweden. The most striking reason why they got the job, is their discovery of a new, highly noise resistant, antenna. It is called 4DAir, and comes in four types. Each type can only transmit and receive signals in a direction aligned with a (slightly skewed) latitudinal and longitudinal grid, because of the interacting electromagnetic field of the earth. The four types correspond to antennas operating in the directions north, west, south, and east, respectively. Below is an example picture of places of interest, depicted by twelve small rings, and nine 4DAir antennas depicted by ellipses covering them. 
 
Obviously, it is desirable to use as few antennas as possible, but still provide coverage for each place of interest. We model the problem as follows: Let A be a rectangular matrix describing the surface of Sweden, where an entry of A either is a point of interest, which must be covered by at least one antenna, or empty space. Antennas can only be positioned at an entry in A. When an antenna is placed at row r and column c, this entry is considered covered, but also one of the neighbouring entries (c+1,r),(c,r+1),(c-1,r), or (c,r-1), is covered depending on the type chosen for this particular antenna. What is the least number of antennas for which there exists a placement in A such that all points of interest are covered? 

Input

On the first row of input is a single positive integer n, specifying the number of scenarios that follow. Each scenario begins with a row containing two positive integers h and w, with 1 <= h <= 40 and 0 < w <= 10. Thereafter is a matrix presented, describing the points of interest in Sweden in the form of h lines, each containing w characters from the set ['*','o']. A '*'-character symbolises a point of interest, whereas a 'o'-character represents open space. 

Output

For each scenario, output the minimum number of antennas necessary to cover all '*'-entries in the scenario's matrix, on a row of its own.

Sample Input

2
7 9
ooo**oooo
**oo*ooo*
o*oo**o**
ooooooooo
*******oo
o*o*oo*oo
*******oo
10 1
*
*
*
o
*
*
*
*
*
*

Sample Output

17
5
题意:一个n*m的平面内有一些点,有1*2的纸条,可以横放或竖放,求最少用多少张纸条才能覆盖所有点?
题解:纸条相当于一条边,上道题求得为覆盖所有边的最小点数,这道题则逆其道而行,可转化为覆盖所有点的最小边数,即最小路径覆盖
二分图中最小路径覆盖=点数-最小边覆盖
然后就可以用匈牙利跑了~
代码如下:
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std; vector<int> g[];
int vis[],link[];
int map[][],n,m,cnt,ttt;
char c[][]; int dfs(int x)
{
int sz=g[x].size();
for(int k=;k<sz;k++)
{
int y=g[x][k];
if(!vis[y])
{
vis[y]=;
if(!link[y]||dfs(link[y]))
{
link[y]=x;
return ;
}
}
}
return ;
} int search()
{
memset(link,,sizeof(link));
int tmp=;
for(int i=;i<=cnt;i++)
{
if(dfs(i))
{
memset(vis,,sizeof(vis));
tmp++;
}
}
return tmp;
} int main()
{
scanf("%d",&ttt);
while(ttt--)
{
cnt=;
scanf("%d%d",&n,&m);
memset(map,,sizeof(map));
for(int i=;i<=;i++)
{
g[i].clear();
}
for(int i=;i<=n;i++)
{
scanf("%s",c[i]);
for(int j=;j<m;j++)
{
if(c[i][j]=='o')
{
map[i][j+]=;
}
else
{
map[i][j+]=++cnt;
}
}
} for(int i=;i<=n;i++)
{
for(int j=;j<=m;j++)
{
if(map[i][j])
{
if(map[i][j+])
{
g[map[i][j]].push_back(map[i][j+]);
}
if(map[i][j-])
{
g[map[i][j]].push_back(map[i][j-]);
}
if(map[i+][j])
{
g[map[i][j]].push_back(map[i+][j]);
}
if(map[i-][j])
{
g[map[i][j]].push_back(map[i-][j]);
}
}
}
}
int ans=search();
int x=cnt-ans/;
printf("%d\n",x);
}
}

 

POJ3020 Antenna Placement(二分图最小路径覆盖)的更多相关文章

  1. POJ 3020 Antenna Placement (二分图最小路径覆盖)

    <题目链接> 题目大意:一个矩形中,有N个城市’*’,现在这n个城市都要覆盖无线,每放置一个基站,至多可以覆盖相邻的两个城市.问至少放置多少个基站才能使得所有的城市都覆盖无线? 解题分析: ...

  2. poj 3020 Antenna Placement(最小路径覆盖 + 构图)

    http://poj.org/problem?id=3020 Antenna Placement Time Limit: 1000MS   Memory Limit: 65536K Total Sub ...

  3. POJ 3020——Antenna Placement——————【 最小路径覆盖、奇偶性建图】

    Antenna Placement Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u S ...

  4. poj 3020 Antenna Placement (最小路径覆盖)

    二分图题目 当时看到网上有人的博客写着最小边覆盖,也有人写最小路径覆盖,我就有点方了,斌哥(kuangbin)的博客上只给了代码,没有解释,但是现在我还是明白了,这是个最小路径覆盖(因为我现在还不知道 ...

  5. [bzoj2150]部落战争_二分图最小路径覆盖

    部落战争 bzoj-2150 题目大意:题目链接. 注释:略. 想法: 显然是最小路径覆盖,我们知道:二分图最小路径覆盖等于节点总数-最大匹配. 所以我们用匈牙利或者dinic跑出最大匹配,然后用总结 ...

  6. Taxi Cab Scheme POJ - 2060 二分图最小路径覆盖

    Running a taxi station is not all that simple. Apart from the obvious demand for a centralised coord ...

  7. POJ3020Antenna Placement(最小路径覆盖+重在构图)

    Antenna Placement Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7788   Accepted: 3880 ...

  8. 【HDU3861 强连通分量缩点+二分图最小路径覆盖】

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3861 题目大意:一个有向图,让你按规则划分区域,要求划分的区域数最少. 规则如下:1.有边u到v以及有 ...

  9. hdu 1151 Air Raid(二分图最小路径覆盖)

    http://acm.hdu.edu.cn/showproblem.php?pid=1151 Air Raid Time Limit: 1000MS   Memory Limit: 10000K To ...

随机推荐

  1. 基于SQL调用Com组件来发送邮件

    这个需求是公司有个文控中心,如果有用增删改了文件信息希望可以发邮件通知到有权限的人.当然方式很多. 这里是用数据库作业来完成 JOB+Com,这里用的com组件是Jmail 当然你需要把com组件放到 ...

  2. Java 编码规范

    package(包) 包名的命名规范:1.小写 2.至少有一层目录 3.域名倒置书写 package baidu; package com.baidu.www; Class(类)-----大驼峰法 类 ...

  3. linux之使用rpmbuild打rpm包

    linux之使用rpmbuild打rpm包 前言: 已从事linux运维工作数年,感觉自己还是个小菜鸟,没有大神那么的钻研的精神.只是单纯热爱,喜欢对着黑色的屏幕敲击命令,喜欢这种感觉.为什么要做RP ...

  4. java代码练习======每隔5行打印数字

    总结:当我们感觉数字排列横排,竖排不好看的时候,学会空几行在排列,哎呦,效果不错喔 package com.aa; public class West2 { public static void ma ...

  5. 1117 Eddington Number

    题意:给出了N个数字,确定一个尽可能大的数字E,要求这N个数字中大于E的数字有E个. 思路: 乍一看不知道题目在说啥.静下心来多读几遍题目,在草稿纸上比划比划,发现是个大水题.解释一下样例,原始序列为 ...

  6. PyYAML和configparser模块讲解

    Python也可以很容易的处理ymal文档格式,只不过需要安装一个模块,参考文档:http://pyyaml.org/wiki/PyYAMLDocumentation ymal主要用于配置文件. Co ...

  7. maven学习1

     1.Maven的约定 src/main/java: 存放项目的java文件. src/main/resources: 存放项目的资源文件,如spring,hibernate的配置文件. src/te ...

  8. 众包高效实用的.NET开源项目

    1.Akka.NET: 概述:更轻松地构建强大的并发和分布式应用. 简介:Akka.NET是一个用于在.NET和Mono上构建高度并发,分布式和容错的事件驱动应用程序的工具包和运行时. 开源地址:ht ...

  9. 关于学习ios开发的一些笔记

    关于方法前的 + - 符号 前置加号(+)的方法为类方法,这类方法是可以直接用类名来调用的,它的作用主要是创建一个实例.相当于是静态的方法. 前置减号(-)的方法为实例方法,必须使用类的实例才可以调用 ...

  10. CAD库中统计PBN运行航路条数和总距离

    select 'PBN运行航路' 类型, fb.b 总条数, fa.a 总距离 from                (                select sum(s)  a  from ...