http://www.cs.princeton.edu/~blei/topicmodeling.html

Topic models are a suite of algorithms that uncover the hidden thematic structure in document collections. These algorithms help us develop new ways to search, browse and summarize large archives of texts.

Below, you will find links to introductory materials, corpus browsers based on topic models, and open source software (from my research group) for topic modeling.

Introductory materials

Corpus browsers based on topic models

The structure uncovered by topic models can be used to explore an otherwise unorganized collection. The following are browsers of large collections of documents, built with topic models.

Also see Sean Gerrish's discipline browser for an interesting application of topic modeling at JSTOR.

To build your own browsers, see Allison Chaney's excellent Topic Model Visualization Engine(TMVE). For example, here is a browser of 100,000 Wikipedia articles that uses TMVE.

Topic modeling software

Our research group has released many open-source software packages for topic modeling. Please post questions, comments, and suggestions about this code to the topic models mailing list.

Link Model/Algorithm Language Author Notes
lda-c Latent Dirichlet allocation C D. Blei This implements variational inference for LDA.
class-slda Supervised topic models for classifiation C++ C. Wang Implements supervised topic models with a categorical response.
lda R package for Gibbs sampling in many models R J. Chang Implements many models and is fast . Supports LDA, RTMs (for networked documents), MMSB (for network data), and sLDA (with a continuous response).
online lda Online inference for LDA Python M. Hoffman Fits topic models to massive data. The demo downloads random Wikipedia articles and fits a topic model to them.
online hdp Online inference for the HDP Python C. Wang Fits hierarchical Dirichlet process topic models to massive data. The algorithm determines the number of topics.
tmve(online) Topic Model Visualization Engine Python A. Chaney A package for creating corpus browsers. See, for example,Wikipedia.
ctr Collaborative modeling for recommendation C++ C. Wang Implements variational inference for a collaborative topic models. These models recommend items to users based on item content and other users' ratings.
dtm Dynamic topic models and the influence model C++ S. Gerrish This implements topics that change over time and a model of how individual documents predict that change.
hdp Hierarchical Dirichlet processes C++ C. Wang Topic models where the data determine the number of topics. This implements Gibbs sampling.
ctm-c Correlated topic models C D. Blei This implements variational inference for the CTM.
diln Discrete infinite logistic normal C J. Paisley This implements the discrete infinite logistic normal, a Bayesian nonparametric topic model that finds correlated topics.
hlda Hierarchical latent Dirichlet allocation C D. Blei This implements a topic model that finds a hierarchy of topics. The structure of the hierarchy is determined by the data.
turbotopics Turbo topics Python D. Blei Turbo topics find significant multiword phrases in topics.

Topic modeling【经典模型】的更多相关文章

  1. 用GibbsLDA做Topic Modeling

    http://weblab.com.cityu.edu.hk/blog/luheng/2011/06/24/%E7%94%A8gibbslda%E5%81%9Atopic-modeling/#comm ...

  2. 论文《Entity Linking with Effective Acronym Expansion, Instance Selection and Topic Modeling》

    Entity Linking with Effective Acronym Expansion, Instance Selection and Topic Modeling 一.主要贡献 1. pro ...

  3. 【Keras篇】---利用keras改写VGG16经典模型在手写数字识别体中的应用

    一.前述 VGG16是由16层神经网络构成的经典模型,包括多层卷积,多层全连接层,一般我们改写的时候卷积层基本不动,全连接层从后面几层依次向前改写,因为先改参数较小的. 二.具体 1.因为本文中代码需 ...

  4. 【神经网络篇】--基于数据集cifa10的经典模型实例

    一.前述 本文分享一篇基于数据集cifa10的经典模型架构和代码. 二.代码 import tensorflow as tf import numpy as np import math import ...

  5. 【BZOJ 3232】圈地游戏 二分+SPFA判环/最小割经典模型

    最小割经典模型指的是“一堆元素进行选取,对于某个元素的取舍有代价或价值,对于某些对元素,选取后会有额外代价或价值”的经典最小割模型,建立倒三角进行最小割.这个二分是显然的,一开始我也是想到了最小割的那 ...

  6. 大话CNN经典模型:VGGNet

       2014年,牛津大学计算机视觉组(Visual Geometry Group)和Google DeepMind公司的研究员一起研发出了新的深度卷积神经网络:VGGNet,并取得了ILSVRC20 ...

  7. 大话CNN经典模型:AlexNet

    2012年,Alex Krizhevsky.Ilya Sutskever在多伦多大学Geoff Hinton的实验室设计出了一个深层的卷积神经网络AlexNet,夺得了2012年ImageNet LS ...

  8. 大话CNN经典模型:LeNet

        近几年来,卷积神经网络(Convolutional Neural Networks,简称CNN)在图像识别中取得了非常成功的应用,成为深度学习的一大亮点.CNN发展至今,已经有很多变种,其中有 ...

  9. 【思维题 经典模型】cf632F. Magic Matrix

    非常妙的经典模型转化啊…… You're given a matrix A of size n × n. Let's call the matrix with nonnegative elements ...

随机推荐

  1. 重温CLR(七 ) 属性和事件

    无参属性 许多类型都定义了能被获取或更高的状态信息.这种状态信息一般作为类型的字段成员实现.例如一下类型包含两个字段: public sealed class Employee{ public str ...

  2. sizeof与strlen()、递归优化题解

    一.sizeof sizeof是C/C++中的一个操作符(operator),确切的说是一个编译时运算符,参数可以是数组.指针.类型.对象.函数等.用于统计类型或者变量所占的内存字节数.由于在编译时计 ...

  3. 数据库中字段的数据类型与JAVA中数据类型的对应关系

    类型名称 显示长度 数据库类型 JAVA类型 JDBC类型索引(int) 描述             VARCHAR L+N VARCHAR java.lang.String 12   CHAR N ...

  4. Grunt 新手一日入门

    var sassStyle = 'expanded'; grunt.initConfig({ pkg: grunt.file.readJSON('package.json'), sass: { out ...

  5. 几个ADB常用命令

    http://blog.163.com/ymguan@yeah/blog/static/14007287220133149477594/ 1. 显示当前运行的全部模拟器:    adb devices ...

  6. oracle系统表的查询

    oracle查询用户下的所有表 select * from all_tab_comments -- 查询所有用户的表,视图等select * from user_tab_comments   -- 查 ...

  7. javabrideg的使用实践

    (1)进入这个网站http://sourceforge.net/projects/php-java-bridge/files,选择Binary package,然后选择最新的版本Php-java-br ...

  8. 运行maven打出来的jar包报错:Unable to locate Spring NamespaceHandler for XML schema namespace

    问题背景:新建了一个maven项目,打了一个可运行jar包,依赖了spring几个jar包,一跑就报错了 E:\workspace\point-circle\target>java -jar p ...

  9. TCP之四:TCP 滑动窗口协议 详解

    滑动窗口机制 滑动窗口协议的基本原理就是在任意时刻,发送方都维持了一个连续的允许发送的帧的序号,称为发送窗口:同时,接收方也维持了一个连续的允许接收的帧的序号,称为接收窗口.发送窗口和接收窗口的序号的 ...

  10. codeforce 977 F. Consecutive Subsequence

    F. Consecutive Subsequence time limit per test 2 seconds memory limit per test 256 megabytes input s ...