Topic modeling【经典模型】
http://www.cs.princeton.edu/~blei/topicmodeling.html
Topic models are a suite of algorithms that uncover the hidden thematic structure in document collections. These algorithms help us develop new ways to search, browse and summarize large archives of texts.
Below, you will find links to introductory materials, corpus browsers based on topic models, and open source software (from my research group) for topic modeling.
Introductory materials
- I wrote a general introduction to topic modeling.
- John Lafferty and I wrote a more technical review paper about this field.
- Here are slides from some recent tutorials about topic modeling:
- Here is a video from a talk on dynamic and correlated topic models applied to the journal Science . (Here are the slides.)
- David Mimno maintains a bibliography of topic modeling papers and software.
- The topic models mailing list is a good forum for discussing topic modeling.
Corpus browsers based on topic models
The structure uncovered by topic models can be used to explore an otherwise unorganized collection. The following are browsers of large collections of documents, built with topic models.
- A 100-topic browser of the dynamic topic model fit to Science (1882-2001).
- A 100-topic browserof the correlated topic model fit to Science (1980-2000)
- A 50-topic browser of latent Dirichlet allocation fit to the 2006 arXiv.
- A 20-topic browserof latent Dirichlet allocation fit to The American Political Science Review
Also see Sean Gerrish's discipline browser for an interesting application of topic modeling at JSTOR.
To build your own browsers, see Allison Chaney's excellent Topic Model Visualization Engine(TMVE). For example, here is a browser of 100,000 Wikipedia articles that uses TMVE.
Topic modeling software
Our research group has released many open-source software packages for topic modeling. Please post questions, comments, and suggestions about this code to the topic models mailing list.
| Link | Model/Algorithm | Language | Author | Notes |
| lda-c | Latent Dirichlet allocation | C | D. Blei | This implements variational inference for LDA. |
| class-slda | Supervised topic models for classifiation | C++ | C. Wang | Implements supervised topic models with a categorical response. |
| lda | R package for Gibbs sampling in many models | R | J. Chang | Implements many models and is fast . Supports LDA, RTMs (for networked documents), MMSB (for network data), and sLDA (with a continuous response). |
| online lda | Online inference for LDA | Python | M. Hoffman | Fits topic models to massive data. The demo downloads random Wikipedia articles and fits a topic model to them. |
| online hdp | Online inference for the HDP | Python | C. Wang | Fits hierarchical Dirichlet process topic models to massive data. The algorithm determines the number of topics. |
| tmve(online) | Topic Model Visualization Engine | Python | A. Chaney | A package for creating corpus browsers. See, for example,Wikipedia. |
| ctr | Collaborative modeling for recommendation | C++ | C. Wang | Implements variational inference for a collaborative topic models. These models recommend items to users based on item content and other users' ratings. |
| dtm | Dynamic topic models and the influence model | C++ | S. Gerrish | This implements topics that change over time and a model of how individual documents predict that change. |
| hdp | Hierarchical Dirichlet processes | C++ | C. Wang | Topic models where the data determine the number of topics. This implements Gibbs sampling. |
| ctm-c | Correlated topic models | C | D. Blei | This implements variational inference for the CTM. |
| diln | Discrete infinite logistic normal | C | J. Paisley | This implements the discrete infinite logistic normal, a Bayesian nonparametric topic model that finds correlated topics. |
| hlda | Hierarchical latent Dirichlet allocation | C | D. Blei | This implements a topic model that finds a hierarchy of topics. The structure of the hierarchy is determined by the data. |
| turbotopics | Turbo topics | Python | D. Blei | Turbo topics find significant multiword phrases in topics. |
Topic modeling【经典模型】的更多相关文章
- 用GibbsLDA做Topic Modeling
http://weblab.com.cityu.edu.hk/blog/luheng/2011/06/24/%E7%94%A8gibbslda%E5%81%9Atopic-modeling/#comm ...
- 论文《Entity Linking with Effective Acronym Expansion, Instance Selection and Topic Modeling》
Entity Linking with Effective Acronym Expansion, Instance Selection and Topic Modeling 一.主要贡献 1. pro ...
- 【Keras篇】---利用keras改写VGG16经典模型在手写数字识别体中的应用
一.前述 VGG16是由16层神经网络构成的经典模型,包括多层卷积,多层全连接层,一般我们改写的时候卷积层基本不动,全连接层从后面几层依次向前改写,因为先改参数较小的. 二.具体 1.因为本文中代码需 ...
- 【神经网络篇】--基于数据集cifa10的经典模型实例
一.前述 本文分享一篇基于数据集cifa10的经典模型架构和代码. 二.代码 import tensorflow as tf import numpy as np import math import ...
- 【BZOJ 3232】圈地游戏 二分+SPFA判环/最小割经典模型
最小割经典模型指的是“一堆元素进行选取,对于某个元素的取舍有代价或价值,对于某些对元素,选取后会有额外代价或价值”的经典最小割模型,建立倒三角进行最小割.这个二分是显然的,一开始我也是想到了最小割的那 ...
- 大话CNN经典模型:VGGNet
2014年,牛津大学计算机视觉组(Visual Geometry Group)和Google DeepMind公司的研究员一起研发出了新的深度卷积神经网络:VGGNet,并取得了ILSVRC20 ...
- 大话CNN经典模型:AlexNet
2012年,Alex Krizhevsky.Ilya Sutskever在多伦多大学Geoff Hinton的实验室设计出了一个深层的卷积神经网络AlexNet,夺得了2012年ImageNet LS ...
- 大话CNN经典模型:LeNet
近几年来,卷积神经网络(Convolutional Neural Networks,简称CNN)在图像识别中取得了非常成功的应用,成为深度学习的一大亮点.CNN发展至今,已经有很多变种,其中有 ...
- 【思维题 经典模型】cf632F. Magic Matrix
非常妙的经典模型转化啊…… You're given a matrix A of size n × n. Let's call the matrix with nonnegative elements ...
随机推荐
- MFC多语言程序版本,在不同的windows系统上的使用 FP_SetThreadUILanguage
from: http://www.cnblogs.com/qijicxl/p/3840157.html 如何使MFC程序界面支持多国语言?这次使用后给自己做一个总结. 我们使用vc6.0的版本来试验 ...
- ORACLE PL/SQL编程之触发器
8.1 触发器类型 8.1.1 DML触发器 8.1.2 替代触发器 8.1.3 系统触发器 8.2 创建触发器 8.2.1 触发器触发次序 8.2.2 创建DML触发器 8.2.3 创建替代(INS ...
- 区分/不区分大小写的比较,查找字符串在另一字符串中的位置,字符串开头是否包括另一字符串 hasPrefix
NSString *str; // 使用stringWithFormat生成一格式化字符串 str = [NSString stringWithFormat:@"This is %@&quo ...
- 系列文章--SQLite文章
SQLite 随机取n行的方法 SQLite多线程写锁文件解决方案 sqlite和sql server语法上的一些区别 sqlite编程插入标示字段,获得新id C# SQLiteHe ...
- bzoj 4453 cys就是要拿英魂!——后缀数组+单调栈+set
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4453 询问离线,按R排序. 发现直接用 rk[ ] 的错误情况就是前面的某个位置 j 和自己 ...
- Use the dkms from EPEL when install CUDA Toolkits on CentOS
###Use the dkms from EPEL. yum install epel-release yum install dkms # download the rpm from the NVi ...
- 如何让公司从SVN改到Git?
把公司的SVN迁移到GitLab CE(GitLab社区版)原因主要有下面几个: 年青的新人进来,喜欢用git的越来越多 GitLab CE提供了优美的 web 界面,图形化分支结构,更直观的代码审查 ...
- (转)Apache转发配置
本文转载自:http://blog.csdn.net/leshjmail/article/details/6163581 安装文件 1.httpd-2.2.15-win32-x86-no_ssl.ms ...
- Vue.js:模版语法
ylbtech-Vue.js:模版语法 1.返回顶部 1. Vue.js 模板语法 Vue.js 使用了基于 HTML 的模版语法,允许开发者声明式地将 DOM 绑定至底层 Vue 实例的数据. Vu ...
- PHP中的逻辑判断函数empty() isset() is_null() ==NULL ===NULL
1.empty() header("Content-type: text/html; charset=utf-8"); if(!empty($data)){ //empty() 未 ...