回溯法之n皇后问题
package main import (
"fmt"
"math"
) //判断第k行的某一列放置是否合法
func check(col []int, k int) int {
for i := ; i < k; i++ {
if col[i] == col[k] || float64(k - i) == math.Abs(float64(col[k] - col[i])) {//与前部分行同列或者列之差的绝对值与两行之差的绝对值相等
return
}
}
return
} //迭代实现, 思想原理同着色问题
func n_queen(k int) []int{
var i int
col := make([]int, k)
for i = ; i < k; i++ {
col[i] =
}
for i = ; i >= ; {
for col[i] < k {
col[i]++
if check(col, i) > {
i++
}
if i == k {
return col
}
}
col[i] =
i--
}
return nil
} func main() {
k :=
res := n_queen(k)
if res != nil {
for i := ; i < k; i++ {
fmt.Print(res[i], "\t")
}
}
}
回溯法之n皇后问题的更多相关文章
- 回溯法解决N皇后问题(以四皇后为例)
以4皇后为例,其他的N皇后问题以此类推.所谓4皇后问题就是求解如何在4×4的棋盘上无冲突的摆放4个皇后棋子.在国际象棋中,皇后的移动方式为横竖交叉的,因此在任意一个皇后所在位置的水平.竖直.以及45度 ...
- 回溯法求解n皇后和迷宫问题
回溯法是一种搜索算法,从某一起点出发按一定规则探索,当试探不符合条件时则返回上一步重新探索,直到搜索出所求的路径. 回溯法所求的解可以看做解向量(n皇后坐标组成的向量,迷宫路径点组成的向量等),所有解 ...
- USACO 1.5.4 Checker Challenge跳棋的挑战(回溯法求解N皇后问题+八皇后问题说明)
Description 检查一个如下的6 x 6的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行,每列,每条对角线(包括两条主对角线的所有对角线)上都至多有一个棋子. 列号 0 1 2 3 4 5 6 ...
- C++使用回溯法实现N皇后问题的求解
回溯法是个很无聊的死算方法,没什么技巧,写这篇博客主要原因是以前思路不太清晰,现在突然想用回溯法解决一个问题时,无法快速把思路转换成代码. ------------------------------ ...
- 用试探回溯法解决N皇后问题
学校数据结构的课程实验之一. 数据结构:(其实只用了一个二维数组) 算法:深度优先搜索,试探回溯 需求分析: 设计一个在控制台窗口运行的“n皇后问题”解决方案生成器,要求实现以下功能: 由n*n个方块 ...
- 回溯法——求解N皇后问题
问题描写叙述 八皇后问题是十九世纪著名数学家高斯于1850年提出的.问题是:在8*8的棋盘上摆放8个皇后.使其不能互相攻击,即随意的两个皇后不能处在允许行.同一列,或允许斜线上. 能够把八皇后问题拓展 ...
- 递归回溯法求N皇后问题
问题描述:在一个NN(比如44)的方格中,在每一列中放置一个皇后,要求放置的皇后不在同一行,同一列,同一斜线上,求一共有多少种放置方法,输出放置的数组. 思路解析:从(1,1)开始,一列一列的放置皇后 ...
- 回溯法解n皇后问题
#include<bits/stdc++.h> using namespace std; int n,sum; int c[100]; void search(int cur){ if(c ...
- javascript实现数据结构: 树和二叉树的应用--最优二叉树(赫夫曼树),回溯法与树的遍历--求集合幂集及八皇后问题
赫夫曼树及其应用 赫夫曼(Huffman)树又称最优树,是一类带权路径长度最短的树,有着广泛的应用. 最优二叉树(Huffman树) 1 基本概念 ① 结点路径:从树中一个结点到另一个结点的之间的分支 ...
随机推荐
- ZOJ1119(SPF)
题目链接:传送门 题目大意:一副无向图,问有多少个节点满足删除该节点后图不连通,对于每个满足条件的节点,输出节点编号及删除节点将图分为几个连通块.若没有节点满足则输出No SPF nodes 题目思路 ...
- HDU4771(2013 Asia Hangzhou Regional Contest )
http://acm.hdu.edu.cn/showproblem.php?pid=4771 题目大意: 给你一幅图(N*M)“@”是起点,"#"是墙,“.”是路,然后图上有K个珠 ...
- java数据结构之枚举
Enumeration接口中定义了一些方法,通过这些方法可以枚举(一次获得一个)对象集合中的元素. import java.util.Vector; import java.util.Enumerat ...
- 160824、ionic添加地图站点
1.基本的地图显示 <!DOCTYPE html> <html ng-app="myApp"> <head> <meta charset= ...
- 约束、自定义异常、hashlib模块、logging日志模块
一.约束(重要***) 1.首先我们来说一下java和c#中的一些知识,学过java的人应该知道,java中除了有类和对象之外,还有接口类型,java规定,接口中不允许在方法内部写代码,只能约束继承它 ...
- dataTables.bootstrap 如何显示中文
$('#table_cust').DataTable({ "oLanguage": { "sUrl": "/assets/vendors/page_z ...
- 001-Spring在代码中获取bean的几种方式
一.概述 方法一:在初始化时保存ApplicationContext对象 方法二:通过Spring提供的utils类获取ApplicationContext对象 方法三:继承自抽象类Applicati ...
- Parzen-Window Density Estimation(PWDE)
1.概率密度函数 在在数学中,连续型随机变量的概率密度函数(在不至于混淆时可以简称为密度函数)是一个描述这个随机变量的输出值,在某个确定的取值点附近的可能性的函数.而随机变量的取值落在某个区域之内的概 ...
- JavaWeb—过滤器Filter
1.Filter简介 Filter称之为过滤器,是用来做一些拦截的任务.比如客户端请求服务器的某个资源时(可以是Servlet.JSP.HTML等等),我们可以拦截.当服务器返回资源给客户端的时候,我 ...
- JavaScript+css+ div HTML遮罩層效果
<html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Test</title ...