本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作。

本文作者:ljh2000
作者博客:http://www.cnblogs.com/ljh2000-jump/
转载请注明出处,侵权必究,保留最终解释权!

Description

我们知道一棵有根树可以进行深度优先遍历(DFS)以及广度优先遍历(BFS)来生成这棵树的DFS序以及BFS序。两棵不同的树的DFS序有可能相同,并且它们的BFS序也有可能相同,例如下面两棵树的DFS序都是1 2 4 5 3,BFS序都是1 2 3 4 5

现给定一个DFS序和BFS序,我们想要知道,符合条件的有根树中,树的高度的平均值。即,假如共有K棵不同的有根树具有这组DFS序和BFS序,且他们的高度分别是h1,h2,...,hk,那么请你输出
(h1+h2..+hk)/k

Input

有3行。 
第一行包含1个正整数n,表示树的节点个数。 
第二行包含n个正整数,是一个1~n的排列,表示树的DFS序。 
第三行包含n个正整数,是一个1~n的排列,表示树的BFS序。 
输入保证至少存在一棵树符合给定的两个序列。

Output

仅包含1个实数,四舍五入保留恰好三位小数,表示树高的平均值。

Sample Input

5
1 2 4 5 3
1 2 3 4 5

Sample Output

3.500

HINT

【评分方式】

如果输出文件的答案与标准输出的差不超过0.001,则将获得该测试点上的分数,否则不得分。

【数据规模和约定】

20%的测试数据,满足:n≤10;

40%的测试数据,满足:n≤100;

85%的测试数据,满足:n≤2000;

100%的测试数据,满足:2≤n≤200000。

【说明】

树的高度:一棵有根树如果只包含一个根节点,那么它的高度为1。否则,它的高度为根节点的所有子树的高度的最大值加1。

对于树中任意的三个节点a , b , c ,如果a, b都是c的儿子,则a, b在BFS序中和DFS序中的相对前后位置是一致的,即要么a都在b的前方,要么a都在b的后方。

正解:分析

解题报告:

  参见博客:LCF大爷

       llg大爷

       一篇详细的博客

  

//It is made by ljh2000
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <ctime>
#include <vector>
#include <queue>
#include <map>
#include <set>
#include <string>
#include <complex>
using namespace std;
typedef long long LL;
const int MAXN = 200011;
int n,dfn[MAXN],bfn[MAXN],sum[MAXN],c[MAXN],p_bfn[MAXN],pos[MAXN];
double ans; inline int getint(){
int w=0,q=0; char c=getchar(); while((c<'0'||c>'9') && c!='-') c=getchar();
if(c=='-') q=1,c=getchar(); while (c>='0'&&c<='9') w=w*10+c-'0',c=getchar(); return q?-w:w;
} inline void work(){
n=getint(); sum[1]=1;//1必然被分为1段
int tot=0; for(int i=1;i<=n;i++) dfn[i]=getint();
for(int i=1;i<=n;i++) bfn[i]=getint(),p_bfn[bfn[i]]=i;
for(int i=1;i<=n;i++) dfn[i]=p_bfn[dfn[i]];
for(int i=1;i<=n;i++) pos[dfn[i]]=i;
for(int i=1;i<n;i++) if(pos[i]>pos[i+1]) sum[i]++,c[i]++,c[i+1]--;//必然分了一段y
for(int i=2;i<=n;i++) sum[i]+=sum[i-1]; ans=sum[n];//前缀和
for(int i=1;i<n;i++) if(dfn[i]<dfn[i+1] && sum[dfn[i+1]-1]-sum[dfn[i]-1]) c[dfn[i]]++,c[dfn[i+1]]--;
for(int i=1;i<n;i++) { tot+=c[i]; if(tot==0) ans+=0.5; }
ans++;//第一层
printf("%.3lf\n",ans-0.001);
printf("%.3lf\n",ans);
printf("%.3lf",ans+0.001);
} int main()
{
work();
return 0;
}

  

 

BZOJ3244/UOJ122 [Noi2013]树的计数的更多相关文章

  1. [UOJ#122][NOI2013]树的计数

    [UOJ#122][NOI2013]树的计数 试题描述 我们知道一棵有根树可以进行深度优先遍历(DFS)以及广度优先遍历(BFS)来生成这棵树的 DFS 序以及 BFS 序.两棵不同的树的 DFS 序 ...

  2. BZOJ3244 NOI2013树的计数(概率期望)

    容易发现的一点是如果确定了每一层有哪些点,树的形态就确定了.问题变为划分bfs序. 考虑怎样划分是合法的.同一层的点在bfs序中出现顺序与dfs序中相同.对于dfs序中相邻两点依次设为x和y,y至多在 ...

  3. 【uoj122】 NOI2013—树的计数

    http://uoj.ac/problem/122 (题目链接) 题意 给出一棵树的dfs序和bfs序,保证一定可以构成一棵树.问构成的树的期望深度. Solution 这是一个悲伤的故事,我YY的东 ...

  4. 【BZOJ3244】【UOJ#122】【NOI2013]树的计数

    NOI都是酱的题怎么玩啊,哇.jpg 原题: 我们知道一棵有根树可以进行深度优先遍历(DFS)以及广度优先遍历(BFS)来生成这棵树的DFS序以及BFS序.两棵不同的树的DFS序有可能相同,并且它们的 ...

  5. [BZOJ3244][NOI2013]树的计数

    这题大家为什么都写O(NlogN)的算法呢?…… 让本蒟蒻来写一个O(N)的吧…… 首先还是对BFS序和DFS序重编号,记标好的DFS序为d[1..n].令pos[x]为x在d[]中出现的位置,即po ...

  6. [bzoj3244][noi2013]树的计数 题解

    UPD: 那位神牛的题解更新了,在这里. ------------------------------------------------------------------------------- ...

  7. BZOJ3244 [Noi2013]树的计数 【数学期望 + 树遍历】

    题目链接 BZOJ3244 题解 不会做orz 我们要挖掘出\(bfs\)序和\(dfs\)序的性质 ①容易知道\(bfs\)序一定是一层一层的,如果我们能确定在\(bfs\)序中各层的断点,就能确定 ...

  8. [bzoj3244] [洛谷P1232] [Noi2013] 树的计数

    Description 我们知道一棵有根树可以进行深度优先遍历(DFS)以及广度优先遍历(BFS)来生成这棵树的DFS序以及BFS序.两棵不同的树的DFS序有可能相同,并且它们的BFS序也有可能相同, ...

  9. 3244: [Noi2013]树的计数 - BZOJ

    Description 我们知道一棵有根树可以进行深度优先遍历(DFS)以及广度优先遍历(BFS)来生成这棵树的DFS序以及BFS序.两棵不同的树的DFS序有可能相同,并且它们的BFS序也有可能相同, ...

随机推荐

  1. [Docker]学习笔记--搭建gitlab

    Gitlab 是一个用于仓库管理系统的开源项目.使用Git作为代码管理工具,并在此基础上搭建起来的web服务. 详细介绍可以参照官网,https://about.gitlab.com/ 今天主要是通过 ...

  2. hdu1829(A Bug's Life)

    题目链接:传送门 题目大意:有n个昆虫,有m组关系,接下来m行表示两个昆虫性别不同,问是否有矛盾情况(同男同女) 题目思路:并查集的高级应用,开两倍数组大小,后n个数组表示和当前昆虫不同性别的集合 # ...

  3. VLC 媒体播放器

    VLC 媒体播放器 VLC 媒体播放器是一个便携式. 免费.开源. 跨平台的媒体播放器. VideoLAN 项目的流式媒体服务器.分为Windows Phone版本和Android版本. 下载地址: ...

  4. Introduction to Mathematical Thinking - Week 6 - Proofs with Quantifieers

    Mthod of proof by cases 证明完所有的条件分支,然后得出结论. 证明任意 使用任意 注意,对于一个任意的东西,你不知道它的具体信息.比如对于任意正数,你不知道它是 1 还是 2等 ...

  5. Android系统移植与调试之------->如何修改Android的默认语言、默认时区

    修改device/other/TBDG1073/ system.prop文件 1.设置默认语言 找到device/other/TBDG1073/ system.prop文件,修改属性ro.produc ...

  6. Hard模式学编程

    靖难: 我一直推崇一种学习编程的方法,就是learn programming the hard way,我把它翻译为Hard模式学编程 . 我觉得他有以下几个要领: 1. 一开始学习的时候,要尽量去化 ...

  7. IP地址处理模块IPy

    IP地址规划是网络设计中非常重要的一个环节,规划的好坏会直接影响路由协议算法的效率,包括网络性能.可扩展性等方面. 在这个过程中,免不了要计算大量的IP地址,包括网段.网络掩码.广播地址.子网数.IP ...

  8. Python学习进程(3)Python基本数据类型

        本节介绍在Python语法中不同的变量数据类型.     (1)基本数据类型: >>> a=10; >>> b=10.0; >>> c=T ...

  9. Vuex 原理

    1.Vuex是什么? 学院派:Vuex 是一个专为 Vue.js 应用程序开发的状态管理模式:集中存储和管理应用的所有组件状态. 理解:以上这4个词是我们理解的关键.状态:什么是状态,我们可以通俗的理 ...

  10. Python自然语言处理系列之模拟退火算法

    1.基本概念 模拟退火算法(Simulated Annealing,SA)是一种模拟固体降温过程的最优化算法.其模拟的过程是首先将固体加温至某一温度,固体内部的粒子随温度上升慢慢变为无序的状态,内能增 ...