Manacher算法——最长回文子串
一、相关介绍
最长回文子串
- s="abcd", 最长回文长度为 1,即a或b或c或d
- s="ababa", 最长回文长度为 5,即ababa
- s="abccb", 最长回文长度为 4,即bccb
- 问题:现给你一个非常长的字符串,请求出其最长回文子串
解决方法
传统解决问题的思路是遍历每一个字符,以该字符为中点向两边查找。其时间复杂度为 O(n2),很不高效。
1975年,一个叫Manacher的人发明了一个算法,Manacher 算法(中文名:马拉车算法),该算法可以把时间复杂度提升到 O(n)。
下面来看看马拉车算法是如何工作的。
二、Manacher算法
【算法流程】
由于回文分为偶回文(比如 bccb)和奇回文(比如 bcacb),而在处理奇偶问题上会比较繁琐,所以这里我们使用一个技巧,具体做法是,在字符串首尾,及字符间各插入一个字符(前提这个字符未出现在串里)。
举个例子:s="abbahopxpo",转换为s_new="$#a#b#b#a#h#o#p#x#p#o#"(这里的字符 $ 只是为了防止越界,下面代码会有说明),如此,s 里起初有一个偶回文abba和一个奇回文opxpo,被转换为#a#b#b#a#和#o#p#x#p#o#,长度都转换成了奇数。
定义一个辅助数组int p[],其中p[i]表示以 i 为中心的最长回文的半径,例如:


可以看出,p[i] - 1正好是原字符串中最长回文串的长度。
接下来的重点就是求解 p 数组,如下图:

设置两个变量,mx 和 id 。mx 代表以 id 为中心的最长回文的右边界,也就是mx = id + p[id]。
假设我们现在求p[i],也就是以 i 为中心的最长回文半径,如果i < mx,如上图,那么:
if (i < mx)
p[i] = min(p[2 * id - i], mx - i);
2 * id - i为 i 关于 id 的对称点,即上图的 j 点,而p[j]表示以 j 为中心的最长回文半径,因此我们可以利用p[j]来加快查找。
【加深理解】
根据回文的性质,p[i]的值基于以下三种情况得出:
(1)j 的回文串有一部分在 id 的之外,如下图:

上图中,黑线为 id 的回文,i 与 j 关于 id 对称,红线为 j 的回文。那么根据代码此时p[i] = mx - i,即紫线。那么p[i]还可以更大么?答案是不可能!见下图:

假设右侧新增的紫色部分是p[i]可以增加的部分,那么根据回文的性质,a 等于 d ,也就是说 id 的回文不仅仅是黑线,而是黑线 + 两条紫线,矛盾,所以假设不成立,故p[i] = mx - i,不可以再增加一分。
(2)j 回文串全部在 id 的内部,如下图:

根据代码,此时p[i] = p[j],那么p[i]还可以更大么?答案亦是不可能!见下图:

假设右侧新增的红色部分是p[i]可以增加的部分,那么根据回文的性质,a 等于 b ,也就是说 j 的回文应该再加上 a 和 b ,矛盾,所以假设不成立,故p[i] = p[j],也不可以再增加一分。
(3)j 回文串左端正好与 id 的回文串左端重合,见下图:

根据代码,此时p[i] = p[j]或p[i] = mx - i,并且p[i]还可以继续增加,所以需要
while (s_new[i - p[i]] == s_new[i + p[i]])
p[i]++;
根据(1)(2)(3),很容易推出 Manacher 算法的最坏情况,即为字符串内全是相同字符的时候。在这里我们重点研究Manacher()中的 for 语句,推算发现 for 语句内平均访问每个字符 5 次,即时间复杂度为:Tworst(n)=O(n)。
同理,我们也很容易知道最佳情况下的时间复杂度,即字符串内字符各不相同的时候。推算得平均访问每个字符 4 次,即时间复杂度为:Tbest(n)=O(n)。
综上,Manacher 算法的时间复杂度为 O(n)。
三、代码实现
#include<iostream>
#include<string.h>
#include<algorithm>
using namespace std; char s[1000];
char s_new[2000];
int p[2000]; int Init()
{
int len = strlen(s);
s_new[0] = '$';
s_new[1] = '#';
int j = 2; for (int i = 0; i < len; i++)
{
s_new[j++] = s[i];
s_new[j++] = '#';
} s_new[j] = '\0'; //别忘了哦 return j; //返回s_new的长度
} int Manacher()
{
int len = Init(); //取得新字符串长度并完成向s_new的转换
int max_len = -1; //最长回文长度 int id;
int mx = 0; for (int i = 1; i < len; i++)
{
if (i < mx)
p[i] = min(p[2 * id - i], mx - i); //需搞清楚上面那张图含义, mx和2*id-i的含义
else
p[i] = 1; while (s_new[i - p[i]] == s_new[i + p[i]]) //不需边界判断,因为左有'$',右有'\0'
p[i]++; //我们每走一步i,都要和mx比较,我们希望mx尽可能的远,这样才能更有机会执行if (i < mx)这句代码,从而提高效率
if (mx < i + p[i])
{
id = i;
mx = i + p[i];
} max_len = max(max_len, p[i] - 1);
} return max_len;
} int main()
{ while (printf("请输入字符串:\n"))
{
scanf("%s", s);
printf("最长回文长度为 %d\n\n", Manacher());
} return 0;
}
Manacher算法——最长回文子串的更多相关文章
- Manacher算法----最长回文子串
题目描述 给定一个字符串,求它的最长回文子串的长度. 分析与解法 最容易想到的办法是枚举所有的子串,分别判断其是否为回文.这个思路初看起来是正确的,但却做了很多无用功,如果一个长的子串包含另一个短一些 ...
- Manacher 求最长回文子串算法
Manacher算法,是由一个叫Manacher的人在1975年发明的,可以在$O(n)$的时间复杂度里求出一个字符串中的最长回文子串. 例如这两个回文串“level”.“noon”,Manacher ...
- manacher求最长回文子串算法
原文:http://www.felix021.com/blog/read.php?2040 首先用一个非常巧妙的方式,将所有可能的奇数/偶数长度的回文子串都转换成了奇数长度:在每个字符的两边都插入一个 ...
- hdu 3068 最长回文(manacher&最长回文子串)
最长回文 Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submi ...
- manacher hihoCoder1032 最长回文子串
居然能够做到O(n)的复杂度求最长回文.,也是给跪了. 以下这个人把manacher讲的很好,,能够看看 http://blog.csdn.net/xingyeyongheng/article/det ...
- hdu 3068 最长回文 【Manacher求最长回文子串,模板题】
欢迎关注__Xiong的博客: http://blog.csdn.net/acmore_xiong?viewmode=list 最长回文 ...
- Manacher算法,最长回文串
给你10000长度字符串,然你求最长回文字串,输出长度,暴力算法肯定超时 #include <iostream> #include <string> #include < ...
- LeetCode 5 Longest Palindromic Substring manacher算法,最长回文子序列,string.substr(start,len) 难度:2
https://leetcode.com/problems/longest-palindromic-substring/ manacher算法相关:http://blog.csdn.net/ywhor ...
- manacher求最长回文子串算法模板
#include <iostream> #include <cstring> #include <cstdlib> #include <stdio.h> ...
随机推荐
- ## `nrm`的安装使用
作用:提供了一些最常用的NPM包镜像地址,能够让我们快速的切换安装包时候的服务器地址:什么是镜像:原来包刚一开始是只存在于国外的NPM服务器,但是由于网络原因,经常访问不到,这时候,我们可以在国内,创 ...
- JSP静态包含和动态包含
JSP中有两种包含: 静态包含:<%@include file="被包含页面"%>: 动态包含:<jsp:include page="被包含页面&quo ...
- Percona-Tookit工具包之pt-online-schema-change
Preface As we all know,it's really a troublesome thing to DBA in scenario of changing table ...
- linux命令系列-ln(软硬链接)
linux命令 ln命令可以生成软链接和硬链接,也可叫做符号链接和实体链接. 有兴趣深入理解的可以查阅相关文档,一般的读者只需记住以下几点即可: .不管是软链接还是硬链接都不会额外增加磁盘空间(虽然实 ...
- 《Linux 性能优化实战—倪朋飞 》学习笔记 CPU 篇
平均负载 指单位时间内,系统处于可运行状态和不可中断状态的平均进程数,即平均活跃进程数 可运行状态:正在使用CPU或者正在等待CPU 的进程,也就是我们常用 ps 命令看到的,处于 R 状态 (Run ...
- 【php学习-4】
var_1=11; print $var1->var_1.$var2->var_1; ?> print_Color(); ?> y=self::$x; # code... } ...
- Chrome Google 快捷键
窗口和标签页快捷方式 Ctrl+N 打开新窗口 按住 Ctrl 键,然后点击链接 在新标签页中打开链接 按住 Shift 键,然后点击链接 在新窗口中打开链接 Alt+F4 关闭当前窗口 Ctrl+ ...
- ethereum(以太坊)(基础)--容易忽略的坑(三)
pragma solidity ^0.4.10; contract Byte{ bytes [] public T=new bytes[](3); function setLeng(uint len) ...
- 吐血分享:QQ群霸屏技术(初级篇)
QQ群,仿似一个冷宫;But,你真摒弃不起. 某人,坐拥2000多个2000人群,月收入10w+,此类人数少,皆因多年的沉淀,以形成完全的壁垒,难以企及的层次. 流量的分散,QQ群相对比较优质的地带, ...
- Hadoop(20)-MapReduce框架原理-OutputFormat
1.outputFormat接口实现类 2.自定义outputFormat 步骤: 1). 定义一个类继承FileOutputFormat 2). 定义一个类继承RecordWrite,重写write ...