一、相关介绍

最长回文子串

  • s="abcd", 最长回文长度为 1,即a或b或c或d
  • s="ababa", 最长回文长度为 5,即ababa
  • s="abccb", 最长回文长度为 4,即bccb
  • 问题:现给你一个非常长的字符串,请求出其最长回文子串

解决方法

传统解决问题的思路是遍历每一个字符,以该字符为中点向两边查找。其时间复杂度为 O(n2),很不高效。

1975年,一个叫Manacher的人发明了一个算法,Manacher 算法(中文名:马拉车算法),该算法可以把时间复杂度提升到 O(n)。

下面来看看马拉车算法是如何工作的。

二、Manacher算法

【算法流程】

由于回文分为偶回文(比如 bccb)和奇回文(比如 bcacb),而在处理奇偶问题上会比较繁琐,所以这里我们使用一个技巧,具体做法是,在字符串首尾,及字符间各插入一个字符(前提这个字符未出现在串里)。

举个例子:s="abbahopxpo",转换为s_new="$#a#b#b#a#h#o#p#x#p#o#"(这里的字符 $ 只是为了防止越界,下面代码会有说明),如此,s 里起初有一个偶回文abba和一个奇回文opxpo,被转换为#a#b#b#a##o#p#x#p#o#,长度都转换成了奇数

定义一个辅助数组int p[],其中p[i]表示以 i 为中心的最长回文的半径,例如:

可以看出,p[i] - 1正好是原字符串中最长回文串的长度。

接下来的重点就是求解 p 数组,如下图:

设置两个变量,mx 和 id 。mx 代表以 id 为中心的最长回文的右边界,也就是mx = id + p[id]

假设我们现在求p[i],也就是以 i 为中心的最长回文半径,如果i < mx,如上图,那么:

if (i < mx)
p[i] = min(p[2 * id - i], mx - i);

2 * id - i为 i 关于 id 的对称点,即上图的 j 点,而p[j]表示以 j 为中心的最长回文半径,因此我们可以利用p[j]来加快查找。

【加深理解】

根据回文的性质,p[i]的值基于以下三种情况得出:

(1)j 的回文串有一部分在 id 的之外,如下图:

上图中,黑线为 id 的回文,i 与 j 关于 id 对称,红线为 j 的回文。那么根据代码此时p[i] = mx - i,即紫线。那么p[i]还可以更大么?答案是不可能!见下图:

假设右侧新增的紫色部分是p[i]可以增加的部分,那么根据回文的性质,a 等于 d ,也就是说 id 的回文不仅仅是黑线,而是黑线 + 两条紫线,矛盾,所以假设不成立,故p[i] = mx - i,不可以再增加一分。

(2)j 回文串全部在 id 的内部,如下图:

根据代码,此时p[i] = p[j],那么p[i]还可以更大么?答案亦是不可能!见下图:

假设右侧新增的红色部分是p[i]可以增加的部分,那么根据回文的性质,a 等于 b ,也就是说 j 的回文应该再加上 a 和 b ,矛盾,所以假设不成立,故p[i] = p[j],也不可以再增加一分。

(3)j 回文串左端正好与 id 的回文串左端重合,见下图:

根据代码,此时p[i] = p[j]p[i] = mx - i,并且p[i]还可以继续增加,所以需要

while (s_new[i - p[i]] == s_new[i + p[i]])
p[i]++;

根据(1)(2)(3),很容易推出 Manacher 算法的最坏情况,即为字符串内全是相同字符的时候。在这里我们重点研究Manacher()中的 for 语句,推算发现 for 语句内平均访问每个字符 5 次,即时间复杂度为:Tworst(n)=O(n)。

同理,我们也很容易知道最佳情况下的时间复杂度,即字符串内字符各不相同的时候。推算得平均访问每个字符 4 次,即时间复杂度为:Tbest(n)=O(n)。

综上,Manacher 算法的时间复杂度为 O(n)

三、代码实现

#include<iostream>
#include<string.h>
#include<algorithm>
using namespace std; char s[1000];
char s_new[2000];
int p[2000]; int Init()
{
int len = strlen(s);
s_new[0] = '$';
s_new[1] = '#';
int j = 2; for (int i = 0; i < len; i++)
{
s_new[j++] = s[i];
s_new[j++] = '#';
} s_new[j] = '\0'; //别忘了哦 return j; //返回s_new的长度
} int Manacher()
{
int len = Init(); //取得新字符串长度并完成向s_new的转换
int max_len = -1; //最长回文长度 int id;
int mx = 0; for (int i = 1; i < len; i++)
{
if (i < mx)
p[i] = min(p[2 * id - i], mx - i); //需搞清楚上面那张图含义, mx和2*id-i的含义
else
p[i] = 1; while (s_new[i - p[i]] == s_new[i + p[i]]) //不需边界判断,因为左有'$',右有'\0'
p[i]++; //我们每走一步i,都要和mx比较,我们希望mx尽可能的远,这样才能更有机会执行if (i < mx)这句代码,从而提高效率
if (mx < i + p[i])
{
id = i;
mx = i + p[i];
} max_len = max(max_len, p[i] - 1);
} return max_len;
} int main()
{ while (printf("请输入字符串:\n"))
{
scanf("%s", s);
printf("最长回文长度为 %d\n\n", Manacher());
} return 0;
}

Manacher算法——最长回文子串的更多相关文章

  1. Manacher算法----最长回文子串

    题目描述 给定一个字符串,求它的最长回文子串的长度. 分析与解法 最容易想到的办法是枚举所有的子串,分别判断其是否为回文.这个思路初看起来是正确的,但却做了很多无用功,如果一个长的子串包含另一个短一些 ...

  2. Manacher 求最长回文子串算法

    Manacher算法,是由一个叫Manacher的人在1975年发明的,可以在$O(n)$的时间复杂度里求出一个字符串中的最长回文子串. 例如这两个回文串“level”.“noon”,Manacher ...

  3. manacher求最长回文子串算法

    原文:http://www.felix021.com/blog/read.php?2040 首先用一个非常巧妙的方式,将所有可能的奇数/偶数长度的回文子串都转换成了奇数长度:在每个字符的两边都插入一个 ...

  4. hdu 3068 最长回文(manacher&amp;最长回文子串)

    最长回文 Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submi ...

  5. manacher hihoCoder1032 最长回文子串

    居然能够做到O(n)的复杂度求最长回文.,也是给跪了. 以下这个人把manacher讲的很好,,能够看看 http://blog.csdn.net/xingyeyongheng/article/det ...

  6. hdu 3068 最长回文 【Manacher求最长回文子串,模板题】

    欢迎关注__Xiong的博客: http://blog.csdn.net/acmore_xiong?viewmode=list 最长回文                                 ...

  7. Manacher算法,最长回文串

    给你10000长度字符串,然你求最长回文字串,输出长度,暴力算法肯定超时 #include <iostream> #include <string> #include < ...

  8. LeetCode 5 Longest Palindromic Substring manacher算法,最长回文子序列,string.substr(start,len) 难度:2

    https://leetcode.com/problems/longest-palindromic-substring/ manacher算法相关:http://blog.csdn.net/ywhor ...

  9. manacher求最长回文子串算法模板

    #include <iostream> #include <cstring> #include <cstdlib> #include <stdio.h> ...

随机推荐

  1. iview+axios实现文件取消上传

    iview+axios实现文件取消上传 iview框架的上传文件目前不支持在上传文件的过程中取消上传,结合axios请求可以实现:使用iview的上传和拖拽功能,却使用axios的上传文件功能来实现取 ...

  2. SQL3120W 不能将xx的字段值转换成 INTEGER值

    一次用DB2 Load/Import导入数据时,报错,提示SQL3120W 不能将xx的字段值转换成 INTEGER值,但目标列不可为空.未装入该行. 目标表: CREATE TABLE TEST( ...

  3. cookie与session的区别,你真的明白吗?

    当我们访问网页时,http是属于无状态的,为什么呢?接下来由我慢慢讲解,在cookie的到来之前,你第一次访问页面的时候和最后一次访问页面服务器是不知道的,不知道那一次访问的页面是你.当用户登录的时候 ...

  4. 虚拟内存设置(解决linux内存不够情况)

    一.      虚拟内存介绍 背景介绍 Memory指机器物理内存,读写速度低于CPU一个量级,但是高于磁盘不止一个量级.所以,程序和数据如果在内存的话,会有非常快的读写速度.但是,内存的造价是要高于 ...

  5. Python3 operator模块关联代替Python2 cmp() 函数

    Python2 cmp() 函数 描述 cmp(x,y) 函数用于比较2个对象,如果 x < y 返回 -1, 如果 x == y 返回 0, 如果 x > y 返回 1. Python ...

  6. intellij IEDA 从svn拉环境到正常运行

    intellij IEDA  从svn拉环境到正常运行 1.svn拉项目 在项目选择界面点击Check out from Version Control 从中选择Subversion(SVN) 2.选 ...

  7. phpcms2008网站漏洞如何修复 远程代码写入缓存漏洞利用

    SINE安全公司在对phpcms2008网站代码进行安全检测与审计的时候发现该phpcms存在远程代码写入缓存文件的一个SQL注入漏洞,该phpcms漏洞危害较大,可以导致网站被黑,以及服务器遭受黑客 ...

  8. 640. Solve the Equation

    class Solution { public: string solveEquation(string equation) { int idx = equation.find('='); , v1 ...

  9. List排序方法

    可用使用Collections.sort(List<T> list)和Collections.sort(List<T> list, Comparator<? super ...

  10. js分类多选全选

    效果如图: HTML代码: <div class="form-group quanxian-wrap"> <label>项目</label> & ...