CF702F T-Shirts FHQ Treap
题意翻译
题目大意:
有n种T恤,每种有价格ci和品质qi。有m个人要买T恤,第i个人有vi元,每人每次都会买一件能买得起的qi最大的T恤。一个人只能买一种T恤一件,所有人之间都是独立的。问最后每个人买了多少件T恤?
题目描述
The big consignment of t-shirts goes on sale in the shop before the beginning of the spring. In all n n n types of t-shirts go on sale. The t-shirt of the i i i -th type has two integer parameters — ci c_{i} ci and qi q_{i} qi , where ci c_{i} ci — is the price of the i i i -th type t-shirt, qi q_{i} qi — is the quality of the i i i -th type t-shirt. It should be assumed that the unlimited number of t-shirts of each type goes on sale in the shop, but in general the quality is not concerned with the price.
As predicted, k k k customers will come to the shop within the next month, the j j j -th customer will get ready to spend up to bj b_{j} bj on buying t-shirts.
All customers have the same strategy. First of all, the customer wants to buy the maximum possible number of the highest quality t-shirts, then to buy the maximum possible number of the highest quality t-shirts from residuary t-shirts and so on. At the same time among several same quality t-shirts the customer will buy one that is cheaper. The customers don't like the same t-shirts, so each customer will not buy more than one t-shirt of one type.
Determine the number of t-shirts which each customer will buy, if they use the described strategy. All customers act independently from each other, and the purchase of one does not affect the purchase of another.
输入输出格式
输入格式:
The first line contains the positive integer n n n ( 1<=n<=2⋅105 1<=n<=2·10^{5} 1<=n<=2⋅105 ) — the number of t-shirt types.
Each of the following n n n lines contains two integers ci c_{i} ci and qi q_{i} qi ( 1<=ci,qi<=109 1<=c_{i},q_{i}<=10^{9} 1<=ci,qi<=109 ) — the price and the quality of the i i i -th type t-shirt.
The next line contains the positive integer k k k ( 1<=k<=2⋅105 1<=k<=2·10^{5} 1<=k<=2⋅105 ) — the number of the customers.
The next line contains k k k positive integers b1,b2,...,bk b_{1},b_{2},...,b_{k} b1,b2,...,bk ( 1<=bj<=109 1<=b_{j}<=10^{9} 1<=bj<=109 ), where the j j j -th number is equal to the sum, which the j j j -th customer gets ready to spend on t-shirts.
输出格式:
The first line of the input data should contain the sequence of k k k integers, where the i i i -th number should be equal to the number of t-shirts, which the i i i -th customer will buy.
输入输出样例
说明
In the first example the first customer will buy the t-shirt of the second type, then the t-shirt of the first type. He will spend 10 and will not be able to buy the t-shirt of the third type because it costs 4, and the customer will owe only 3. The second customer will buy all three t-shirts (at first, the t-shirt of the second type, then the t-shirt of the first type, and then the t-shirt of the third type). He will spend all money on it.
朴素算法很好想,但TLE;
考虑用平衡树维护;
我们先将衬衫按quality排序;
然后对于每一件衬衫,我们在用人的钱构成的树中操作;
对于>=C[i] 的进行标记,然后下传;
但是-C[i]后,不一定满足merge的条件;
我们可以暴力对于重复的部分进行merge;
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<deque>
#include<stack>
#include<functional>
#include<sstream>
//#include<cctype>
//#pragma GCC optimize(2)
using namespace std;
#define maxn 200005
#define inf 0x7fffffff
//#define INF 1e18
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 1e9;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-5
typedef pair<int, int> pii;
#define pi acos(-1.0)
//const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++)
typedef pair<int, int> pii; inline int rd() {
int x = 0;
char c = getchar();
bool f = false;
while (!isdigit(c)) {
if (c == '-') f = true;
c = getchar();
}
while (isdigit(c)) {
x = (x << 1) + (x << 3) + (c ^ 48);
c = getchar();
}
return f ? -x : x;
} ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a%b);
}
int sqr(int x) { return x * x; } /*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
if (!b) {
x = 1; y = 0; return a;
}
ans = exgcd(b, a%b, x, y);
ll t = x; x = y; y = t - a / b * y;
return ans;
}
*/ int n, m, root;
int lson[maxn], rson[maxn], val[maxn], rnd[maxn];
int cnt[maxn], add[maxn], ans[maxn]; void pushdown(int v) {
if (add[v]) {
add[lson[v]] += add[v]; add[rson[v]] += add[v];
val[lson[v]] += add[v]; val[rson[v]] += add[v];
add[v] = 0;
}
if (ans[v]) {
ans[lson[v]] += ans[v]; ans[rson[v]] += ans[v];
cnt[lson[v]] += ans[v]; cnt[rson[v]] += ans[v];
ans[v] = 0;
}
} void split(int k, int &x, int &y, int v) {
if (!k) {
x = y = 0; return;
}
pushdown(k);
if (val[k] < v) {
x = k; split(rson[k], rson[x], y, v);
}
else {
y = k; split(lson[k], x, lson[y], v);
}
} int merge(int x, int y) {
if (!x || !y)return x + y;
if (rnd[x] < rnd[y]) {
pushdown(x); rson[x] = merge(rson[x], y);
return x;
}
else {
pushdown(y); lson[y] = merge(x, lson[y]);
return y;
}
} int ins(int x, int y) {
int r1 = 0, r2 = 0;
split(x, r1, r2, val[y]);
x = merge(merge(r1, y), r2);
return x;
} int build(int v, int y) {
if (!v)return y;
pushdown(v);
y = build(lson[v], y); y = build(rson[v], y);
lson[v] = rson[v] = 0;
return ins(y, v);
} void dfs(int v) {
if (!v)return;
pushdown(v);
dfs(lson[v]); dfs(rson[v]);
}
pii a[maxn]; int main()
{
//ios::sync_with_stdio(0);
n = rd(); int c, q;
for (int i = 1; i <= n; i++) {
c = rd(); q = rd();
a[i] = make_pair(-q, c);
}
sort(a + 1, a + 1 + n);
m = rd();
for (int i = 1; i <= m; i++) {
val[i] = rd();
rnd[i] = rand();
root = ins(root, i);
}
for (int i = 1; i <= n; i++) {
int c = a[i].second;
int r1 = 0, r2 = 0, r3 = 0, r4 = 0;
split(root, r1, r2, c);
val[r2] -= c; add[r2] -= c;
cnt[r2]++; ans[r2]++;
split(r2, r3, r4, c - 1);
r1 = build(r3, r1);
root = merge(r1, r4);
}
dfs(root);
for (int i = 1; i <= m; i++)printf("%d ", cnt[i]);
return 0;
}
CF702F T-Shirts FHQ Treap的更多相关文章
- FHQ Treap及其可持久化与朝鲜树式重构
FHQ Treap,又称无旋treap,一种不基于旋转机制的平衡树,可支持所有有旋treap.splay等能支持的操作(只有在LCT中会比splay复杂度多一个log).最重要的是,它是OI中唯一一种 ...
- fhq treap最终模板
新学习了fhq treap,厉害了 先贴个神犇的版, from memphis /* Treap[Merge,Split] by Memphis */ #include<cstdio> # ...
- NOI 2002 营业额统计 (splay or fhq treap)
Description 营业额统计 Tiger最近被公司升任为营业部经理,他上任后接受公司交给的第一项任务便是统计并分析公司成立以来的营业情况. Tiger拿出了公司的账本,账本上记录了公司成立以来每 ...
- 【POJ2761】【fhq treap】A Simple Problem with Integers
Description You have N integers, A1, A2, ... , AN. You need to deal with two kinds of operations. On ...
- 【fhq Treap】bzoj1500(听说此题多码上几遍就能不惧任何平衡树题)
1500: [NOI2005]维修数列 Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 15112 Solved: 4996[Submit][Statu ...
- 「FHQ Treap」学习笔记
话说天下大事,就像fhq treap —— 分久必合,合久必分 简单讲一讲.非旋treap主要依靠分裂和合并来实现操作.(递归,不维护fa不维护cnt) 合并的前提是两棵树的权值满足一边的最大的比另一 ...
- FHQ Treap摘要
原理 以随机数维护平衡,使树高期望为logn级别 不依靠旋转,只有两个核心操作merge(合并)和split(拆分) 因此可持久化 先介绍变量 ; int n; struct Node { int v ...
- FHQ Treap小结(神级数据结构!)
首先说一下, 这个东西可以搞一切bst,treap,splay所能搞的东西 pre 今天心血来潮, 想搞一搞平衡树, 先百度了一下平衡树,发现正宗的平衡树写法应该是在二叉查找树的基础上加什么左左左右右 ...
- 在平衡树的海洋中畅游(四)——FHQ Treap
Preface 关于那些比较基础的平衡树我想我之前已经介绍的已经挺多了. 但是像Treap,Splay这样的旋转平衡树码亮太大,而像替罪羊树这样的重量平衡树却没有什么实际意义. 然而类似于SBT,AV ...
- 浅谈fhq treap
一.简介 fhq treap 与一般的treap主要有3点不同 1.不用旋转 2.以merge和split为核心操作,通过它们的组合实现平衡树的所有操作 3.可以可持久化 二.核心操作 代码中val表 ...
随机推荐
- 201671010140. 2016-2017-2 《Java程序设计》java学习第一周
java学习第一周 本周是新学期的开端,也是新的学习进程的开端,第一次接触java这门课程,首先书本的厚度就给我一种无形的压力,这注定了,这门课程不会是轻松的,同时一种全新的学习方 ...
- 张超超OC基础回顾_05 property修饰符,id类型,instancetype。。。
一.property 如果给一个属性同时提供了getter/setter方法, 那么我们称这个属性为可读可写属性 如果只提供了getter方法, 那么我们称这个属性为只读属性 如果只提供了setter ...
- IWebBrowser2不能复制剪切
项目中嵌入了IE控件,近期做了一次大改版,发现网页不能进行复制和剪切了,折腾了半天,发现是com初始化有问题: 修正前的方式: CoInitialize(NULL); // do your work ...
- SQL Server 2008 R2 Express 不能启动
今天,新安装了Sql Server 2008 R2 Express,准备部署相应系统,在完成了数据库还原,系统部署以后,从浏览器里输入系统网址,出现登录页面,登录时报错,无法连上数据库.在查找原因的过 ...
- xamarin.droid自己的示例工程有些都装不上模拟器,是因为它的architectures选项没设对
也许是版本更迭导致的,有些老工程的architectures不对,如果x86不勾的话,是不能在genymotion的模拟器上跑的.
- Luogu 3237 [HNOI2014]米特运输
BZOJ 3573 发现当一个点的权值确定了,整棵树的权值也会随之确定,这个确定关系表现在根结点的总权值上,如果一个点$x$的权值为$v$,那么一步步向上跳后,到根节点的权值就会变成$x*$每一个点的 ...
- Mac10.9下的libtiff编译
libtiff介绍 libtiff下载 libtiff编译 libtiff介绍? 参考:http://en.wikipedia.org/wiki/Tiff libtiff下载 直接到官网下载:http ...
- ASP.NET MVC 3 and the @helper syntax within Razor
Friday, May 13, 2011 ASP.NET MVC 3 supports a new view-engine option called “Razor” (in addition to ...
- 设计模式11: Flyweight 享元模式(结构型模式)
Flyweight 享元模式(结构型模式) 面向对象的代价 面向对象很好的解决了系统抽象性的问题,同时在大多数情况下也不会损及系统的性能.但是,在某些特殊应用中,由于对象的数量太大,采用面向对象会给系 ...
- C# worksheet设置Excel样式
1.例子导出Excel的样式 样式代码 public void Exportdatagridviewtoexcel(string Textname) { SaveFileDialog savedial ...