[BZOJ1564][NOI2009]二叉查找树 树形dp 区间dp
1564: [NOI2009]二叉查找树
Time Limit: 10 Sec Memory Limit: 64 MB
Submit: 879 Solved: 612
[Submit][Status][Discuss]
Description

Input

Output
Sample Input
1 2 3 4
1 2 3 4
1 2 3 4
Sample Output
HINT
输入的原图是左图,它的访问代价是1×1+2×2+3×3+4×4=30。最佳的修改方案是把输入中的第3个结点的权值改成0,得到右图,访问代价是1×2+2×3+3×1+4×2=19,加上额外修改代价10,一共是29。
Source
观察到这就是一个treap。(其实没什么卵用)
设sum为访问频率的前缀和。
考虑dp,设f[w][i][j]表示从i到j组成根节点为原权值第w小之后的点的最小总代价。
第一位从原来权值最大的点开始枚举w。
之后两维枚举i,j。
下一维枚举分割点d。
分两种情况讨论:
1.若修改点d的权值,那么f[w][i][j]=min(f[w][i][j],f[w][i][d-1]+f[w][d+1][to]+sum[to]-sum[i-1]+k);
2.若不修改点d的权值,那么点d的权值要大于m,f[w][i][j]=min(f[w][i][j],f[t[d].a][i][d-1]+f[t[d].a][d+1][to]+sum[to]-sum[i-1]);
ans=f[1][1][n]
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<algorithm>
#define maxn 80
using namespace std;
int read() {
int x=,f=;char ch=getchar();
for(;!isdigit(ch);ch=getchar()) if(ch=='-') f=-;
for(;isdigit(ch);ch=getchar()) x=x*+ch-'';
return x*f;
}
int n,k;
struct data {
int v,a,p;
}t[maxn];
bool cmp1(data t1,data t2) {return t1.a<t2.a;}
bool cmp2(data t1,data t2) {return t1.v<t2.v;}
int sum[maxn];
int f[maxn][maxn][maxn];
int main() {
n=read();k=read();
for(int i=;i<=n;i++) t[i].v=read();
for(int i=;i<=n;i++) t[i].a=read();
for(int i=;i<=n;i++) t[i].p=read();
sort(t+,t+n+,cmp1);
for(int i=;i<=n;i++) t[i].a=i;
sort(t+,t+n+,cmp2);
for(int i=;i<=n;i++) sum[i]=sum[i-]+t[i].p;
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
if(t[i].a>=j) f[j][i][i]=t[i].p;
else f[j][i][i]=t[i].p+k;
for(int w=n;w>=;w--) {
for(int j=;j<=n;j++) {
for(int i=;i+j<=n;i++) {
int to=i+j;
int tmp=;
for(int d=i;d<=to;d++) {
if(t[d].a>=w) tmp=min(tmp,f[t[d].a][i][d-]+f[t[d].a][d+][to]+sum[to]-sum[i-]);
tmp=min(tmp,f[w][i][d-]+f[w][d+][to]+sum[to]-sum[i-]+k);
}
f[w][i][to]=tmp;
}
}
}
printf("%d",f[][][n]);
}
[BZOJ1564][NOI2009]二叉查找树 树形dp 区间dp的更多相关文章
- 洛谷 1063 dp 区间dp
洛谷 1063 dp 区间dp 感觉做完这道提高组T1的题之后,受到了深深的碾压,,最近各种不在状态.. 初看这道题,不难发现它具有区间可并性,即(i, j)的最大值可以由(i, k) 与 (k+1, ...
- 【BZOJ4565】【HAOI2016】字符合并 [状压DP][区间DP]
字符合并 Time Limit: 20 Sec Memory Limit: 256 MB[Submit][Status][Discuss] Description 有一个长度为 n 的 01 串,你 ...
- Treats for the Cows POJ - 3186 dp 区间dp
//dp[i][j]表示第i次从左边取,第j次从右边取的价值,所以我们可以得到状态方程 //dp[i][j]=max(dp[i-1][j]+(i+j)*a[i],dp[i][j-1]+(i+j)*a[ ...
- BZOJ1564 NOI2009二叉查找树(区间dp)
首先按数据值排序,那么连续一段区间的dfs序一定也是连续的. 将权值离散化,设f[i][j][k]为i到j区间内所有点的权值都>=k的最小代价,转移时枚举根考虑是否修改权值即可. #includ ...
- [BZOJ1564][NOI2009]二叉查找树(区间DP)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1564 分析: 首先因为每个点的数据值不变,所以无论树的形态如何变,树的中序遍历肯定不变 ...
- BZOJ 1564 :[NOI2009]二叉查找树(树型DP)
二叉查找树 [题目描述] 已知一棵特殊的二叉查找树.根据定义,该二叉查找树中每个结点的数据值都比它左儿子结点的数据值大,而比它右儿子结点的数据值小. 另一方面,这棵查找树中每个结点都有一个权值,每个结 ...
- bzoj1564: [NOI2009]二叉查找树
dp. 首先这棵树是一个treap. 权值我们可以改成任意实数,所以权值只表示相互之间的大小关系,可以离散化. 树的中序遍历是肯定确定的. 用f[l][r][w]表示中序遍历为l到r,根的权值必须大于 ...
- poj1651 区间dp
//Accepted 200 KB 0 ms //dp区间 //dp[i][j]=min(dp[i][k]+dp[k][j]+a[i]*a[k]*a[j]) i<k<j #include ...
- POJ 1141 Brackets Sequence (区间DP)
Description Let us define a regular brackets sequence in the following way: 1. Empty sequence is a r ...
随机推荐
- 在 Linux 安装 JDK 和 tomcat(菜鸡级别)
安装JDK 卸载 OPENJDK rpm -qa|grep jdk // 查看当前的jdk情况 yum -y remove java java-1.7.0-openjdk* // 卸载openjdk ...
- 【题解】SDOI2014旅行
洛谷P3313 大概是一道树链剖分的裸题.可以看出如果不是查询相同宗教的这一点,就和普通的树链剖分毫无两样了.所以针对每一个宗教都单独开一棵线段树,变成单点修改+区间查询.只不过宗教数目很多,空间消耗 ...
- [洛谷P3937]Changing
题目大意:有 $n$ 盏灯环形排列,顺时针依次标号为 $1\cdots n$.初始时刻为 $0$ ,初始时刻第 $i$ 盏灯的亮灭 $a_i$, $0$ 表示灭, $1$ 表示亮.下一时刻每盏灯的亮灭 ...
- [Leetcode] Palindrome number 判断回文数
Determine whether an integer is a palindrome. Do this without extra space. click to show spoilers. S ...
- Codeforces Round #531 (Div. 3) F. Elongated Matrix(状压DP)
F. Elongated Matrix 题目链接:https://codeforces.com/contest/1102/problem/F 题意: 给出一个n*m的矩阵,现在可以随意交换任意的两行, ...
- python单例与数据库连接池
单例:专业用来处理连接多的问题(比如连接redis,zookeeper等),全局只有一个对象 单例代码def singleton(cls): instances = {} def _singleton ...
- WITH AS 使用
WITH AS 含义: WITH AS短语,也叫做子查询部分(subquery factoring),可以让你做很多事情,定义一个SQL片断,该SQL片断会被整个SQL语句所用到.有的时候,是为了让S ...
- vue之axios使用
axios是vue-resource后出现的Vue请求数据的插件.vue更新到2.0之后,作者尤大就宣告不再对vue-resource更新,而是推荐的axios. 下面我们来使用axios npm i ...
- 转:Mybatis系列之集合映射
转:Mybatis系列之集合映射 上篇文章我们讲了关联映射,实现了销售与登录用户之间的关联.本文我们接着来讲一讲集合映射,实现销售与客户的多对多关系. 实现销售与客户多对多关系 本文中仍延用<M ...
- c#之字符串函数
1.常用的字符串函数 Compare 比较字符串的内容,考虑文化背景(场所),确定某些字符是否相等 int Compare(string str1,string str2) int Compare(s ...