hdu6086

题意

字符串只由 \(01\) 组成,求长度为 \(2L\) 且包含给定的 \(n\) 个子串的字符串的个数(且要求字符串满足 \(s[i] \neq s[|s| - i + 1]\))。

分析

没有想到可以暴力预处理中间那些字符。

官方题解:

如果没有反对称串的限制,直接求一个长度为 \(L\) 的 \(01\) 串满足所有给定串都出现过,那么是一个经典的 AC 自动机的问题,状态 \(f[i][j][S]\) 表示长度为 \(i\),目前在 AC 自动机的节点 \(j\) 上,已经出现的字符串集合为 \(S\) 的方案数,然后直接转移即可,时间复杂度 \(O(2^nL\sum |s|)\)。

然后如果不考虑有串跨越中轴线,那么可以预处理所有正串的 AC 自动机和所有反串(即原串左右翻转)的 AC 自动机,然后从中间向两边 DP,每一次枚举右侧下一个字符是 \(0\) 还是 \(1\),那么另一侧一定是另外一个字符。状态 \(f[i][j][k][S]\) 表示长度为 \(2i\),目前右半边在正串 AC 自动机的节点 \(j\) 上,左半边的反串在反串 AC 自动机的节点 \(k\) 上,已经出现的字符串集合为 \(S\) 的方案数,然后直接转移,时间复杂度 \(O(2^nL(\sum |s|)^2)\)。

现在考虑有串跨越中轴线,可以先爆枚从中间开始左右各 \(\max|s|-1\) 个字符,统计出哪些串以及出现了。对于之后左右扩展出去的字符来说,肯定没有经过的它们的字符串跨越中轴线,因此可以以爆枚的结果为 DP 的初始值,从第 \(\max|s|\) 个字符开始 DP。

时间复杂度 \(O(2^nL(\sum |s|)^2+\max|s|2^{\max|s|})\)。

数组要开成滚动数组,然后爆搜的时候自动机上的状态也要跟着转移。

时限还是很宽松的。

code

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
#include<iostream>
using namespace std;
typedef long long ll;
const int MAXN = 121;
const int MOD = 998244353;
struct Trie {
int root, L, nxt[MAXN][2], fail[MAXN], val[MAXN];
int newnode() {
memset(nxt[L], -1, sizeof nxt[L]);
return L++;
}
void init() {
L = 0;
root = newnode();
memset(val, 0, sizeof val);
memset(fail, 0, sizeof fail);
}
void insert(int id, char S[]) {
int len = strlen(S);
int now = root;
for(int i = 0; i < len; i++) {
int d = S[i] - '0';
if(nxt[now][d] == -1) nxt[now][d] = newnode();
now = nxt[now][d];
}
val[now] |= (1 << id);
}
void build() {
queue<int> Q;
for(int i = 0; i < 2; i++) {
if(nxt[root][i] == -1) nxt[root][i] = 0;
else { fail[nxt[root][i]] = root; Q.push(nxt[root][i]); }
}
while(!Q.empty()) {
int now = Q.front(); Q.pop();
val[now] |= val[fail[now]];
for(int i = 0; i < 2; i++) {
if(nxt[now][i] == -1) nxt[now][i] = nxt[fail[now]][i];
else { fail[nxt[now][i]] = nxt[fail[now]][i]; Q.push(nxt[now][i]); }
}
}
}
int query(char S[], int l, int r) {
int now = root;
int res = 0;
int flg = 0;
int mid = (r - l) / 2 + l;
for(int i = l; i <= r; i++) {
int d = S[i] - '0';
now = nxt[now][d];
res |= val[now];
}
return res;
}
}trie1, trie2;
int n, L, mx;
int dp[2][MAXN][MAXN][64];
void dfs(char s[], int l, int r, int nl, int nr) {
int len = r - l + 1;
if(len / 2 >= mx) {
int tmp = trie2.query(s, l, r);
dp[1][nl][nr][tmp]++;
return;
}
s[l - 1] = '0'; s[r + 1] = '1';
dfs(s, l - 1, r + 1, trie1.nxt[nl][0], trie2.nxt[nr][1]);
s[l - 1] = '1'; s[r + 1] = '0';
dfs(s, l - 1, r + 1, trie1.nxt[nl][1], trie2.nxt[nr][0]);
}
int cnt[64];
int main() {
cnt[0] = 0;
for(int i = 1; i < 64; i++) {
int j = 0;
while(!((i >> j) & 1)) j++;
cnt[i] = cnt[i - (1 << j)] + 1;
}
int T;
scanf("%d", &T);
while(T--) {
scanf("%d%d", &n, &L);
trie1.init();
trie2.init();
mx = 0;
for(int i = 0; i < n; i++) {
char s[22];
scanf("%s", s);
trie2.insert(i, s);
int len = strlen(s);
mx = max(mx, len);
reverse(s, s + len);
trie1.insert(i, s);
}
mx--;
trie1.build();
trie2.build();
memset(dp, 0, sizeof dp);
char s[65];
dfs(s, 23, 22, 0, 0);
int z = 1;
for(int i = mx; i < L; i++, z = !z) {
memset(dp[!z], 0, sizeof dp[!z]);
for(int j = 0; j < trie1.L; j++) {
for(int k = 0; k < trie2.L; k++) {
for(int p = 0; p < (1 << n); p++) {
if(!dp[z][j][k][p]) continue;
for(int q = 0; q < 2; q++) {
int tmp1 = trie1.nxt[j][q], tmp2 = trie2.nxt[k][!q];
(dp[!z][tmp1][tmp2][p | trie1.val[tmp1] | trie2.val[tmp2]] += dp[z][j][k][p]) %= MOD;
}
}
}
}
}
int sum = 0;
for(int i = 0; i < trie1.L; i++) {
for(int j = 0; j < trie2.L; j++) {
sum = (sum + dp[z][i][j][(1 << n) - 1]) % MOD;
}
}
printf("%d\n", sum);
}
return 0;
}

hdu6086(AC 自动机)的更多相关文章

  1. 【AC自动机】【状压dp】【滚动数组】hdu6086 Rikka with String

    给你m个01串,问你有多少个长度为2L的01串,满足前半段倒置取反后等于后半段,并且包含所有的m个01串. 考虑单词完全在中线前面或者后面的情况,直接将单词及其倒置取反插入AC自动机,AC自动机每个结 ...

  2. 基于trie树做一个ac自动机

    基于trie树做一个ac自动机 #!/usr/bin/python # -*- coding: utf-8 -*- class Node: def __init__(self): self.value ...

  3. AC自动机-算法详解

    What's Aho-Corasick automaton? 一种多模式串匹配算法,该算法在1975年产生于贝尔实验室,是著名的多模式匹配算法之一. 简单的说,KMP用来在一篇文章中匹配一个模式串:但 ...

  4. python爬虫学习(11) —— 也写个AC自动机

    0. 写在前面 本文记录了一个AC自动机的诞生! 之前看过有人用C++写过AC自动机,也有用C#写的,还有一个用nodejs写的.. C# 逆袭--自制日刷千题的AC自动机攻克HDU OJ HDU 自 ...

  5. BZOJ 2434: [Noi2011]阿狸的打字机 [AC自动机 Fail树 树状数组 DFS序]

    2434: [Noi2011]阿狸的打字机 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 2545  Solved: 1419[Submit][Sta ...

  6. BZOJ 3172: [Tjoi2013]单词 [AC自动机 Fail树]

    3172: [Tjoi2013]单词 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 3198  Solved: 1532[Submit][Status ...

  7. BZOJ 1212: [HNOI2004]L语言 [AC自动机 DP]

    1212: [HNOI2004]L语言 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1367  Solved: 598[Submit][Status ...

  8. [AC自动机]【学习笔记】

    Keywords Search Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)To ...

  9. AC自动机 HDU 3065

    大概就是裸的AC自动机了 #include<stdio.h> #include<algorithm> #include<string.h> #include< ...

随机推荐

  1. 【COGS 2434】 暗之链锁 树上差分+LCA

    差分就是把一个值拆成许多差的和如 1 2 4 6 9 那么 把这个东西拆成 1 1 2 2 3 就是了,当然也可以理解为对一个问题分解为多个子问题并对其进行操作来得到原问题的答案. 树上差分就更玄妙了 ...

  2. [codeforces gym Matrix God]随机矩阵乘法

    题目链接:http://codeforces.com/gym/101341/problem/I 随机真是一个神奇的方法.原本矩阵乘法是n^3的复杂度,但是这个题是让判断两个矩阵是否相等,只需要在两个矩 ...

  3. POJ 3179 Corral the Cows

    Corral the Cows Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 1352   Accepted: 565 De ...

  4. MongoDB加索引

    1.登陆MongoDB, 命令行在MongoDB主目录下执行:mongo -port 27017 2.切换至需要添加索引的db 并授权 use MeetingBooking db.auth({&quo ...

  5. 一串跟随鼠标的DIV

    div跟随鼠标移动的函数: <!DOCTYPE HTML><html><head> <meta charset="utf-8"> & ...

  6. CORS服务端跨域

    跨域,通常情况下是说在两个不通过的域名下面无法进行正常的通信,或者说是无法获取其他域名下面的数据,这个主要的原因是,浏览器出于安全问题的考虑,采用了同源策略,通过浏览器对JS的限制,防止恶意用户获取非 ...

  7. php CI框架基础知识

    一. CI框架的MVC导图 二. CI框架目录文件介绍 (1)index.php  单入口         整个框架对外暴露的唯一访问文件 (2)application  应用文件(放置用户信息,用户 ...

  8. 【Foreign】Research Rover [DP]

    Research Rover Time Limit: 25 Sec  Memory Limit: 256 MB Description Input Output 仅一行一个整数表示答案. Sample ...

  9. 【BZOJ2663】灵魂宝石 [二分]

    灵魂宝石 Time Limit: 5 Sec  Memory Limit: 128 MB[Submit][Status][Discuss] Description “作为你们本体的灵魂,为了能够更好的 ...

  10. 百练3383:Cell Phone Network

    传送门:http://bailian.openjudge.cn/practice/3383/ [题解] 题目就是最小支配集. 学习了最小支配集的解法: 树形dp(有空可以推一推) 贪心:DFS遍历后逆 ...