Give you three sequences of numbers A, B, C, then we give you a number X. Now you need to calculate if you can find the three numbers Ai, Bj, Ck, which satisfy the formula Ai+Bj+Ck = X.

Input

There are many cases. Every data case is described as followed: In the first line there are three integers L, N, M, in the second line there are L integers represent the sequence A, in the third line there are N integers represent the sequences B, in the forth line there are M integers represent the sequence C. In the fifth line there is an integer S represents there are S integers X to be calculated. 1<=L, N, M<=500, 1<=S<=1000. all the integers are 32-integers.

Output

For each case, firstly you have to print the case number as the form "Case d:", then for the S queries, you calculate if the formula can be satisfied or not. If satisfied, you print "YES", otherwise print "NO".

Sample Input

3 3 3

1 2 3

1 2 3

1 2 3

3

1

4

10

Sample Output

Case 1:

NO

YES

NO

【STL版本】

#include<cstdio>
#include<string>
#include<cstdlib>
#include<cmath>
#include<iostream>
#include<cstring>
#include<set>
#include<queue>
#include<algorithm>
#include<vector>
#include<map>
#include<cctype>
#include<stack>
#include<sstream>
#include<list>
#include<assert.h>
#include<bitset>
#include<numeric>
#define debug() puts("++++")
#define gcd(a,b) __gcd(a,b)
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define fi first
#define se second
#define pb push_back
#define sqr(x) ((x)*(x))
#define ms(a,b) memset(a,b,sizeof(a))
#define sz size()
#define be begin()
#define pu push_up
#define pd push_down
#define cl clear()
#define lowbit(x) -x&x
#define all 1,n,1
#define rep(i,x,n) for(int i=(x); i<(n); i++)
#define in freopen("in.in","r",stdin)
#define out freopen("out.out","w",stdout)
using namespace std;
typedef long long ll;
typedef unsigned long long ULL;
typedef pair<int,int> P;
const int INF = 0x3f3f3f3f;
const ll LNF = 1e18;
const int maxn = 1e3 + 20;
const int maxm = 1e6 + 10;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int dx[] = {-1,1,0,0,1,1,-1,-1};
const int dy[] = {0,0,1,-1,1,-1,1,-1};
int dir[4][2] = {{0,1},{0,-1},{-1,0},{1,0}};
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; ll quickpow(ll a, ll b) {
ll ans = 0;
while (b > 0) {
if (b % 2)ans = ans * a;
b = b / 2;
a = a * a;
}
return ans;
} int gcd(int a, int b) {
return b == 0 ? a : gcd(b, a%b);
} bool cmp(int a, int b) {
return a > b;
}
int l,n,m,q,x;
int a[maxn],b[maxn],c[maxn];
int ab[250005];
/*
ai + bj + ck = x ——>
ai + bj = x -ck
1 2 3
1 2 3
1 2 3
*/
int main()
{
int cas = 1;
while(~scanf("%d%d%d",&l,&n,&m))
{ int f = 0, k;
ms(a,0),ms(b,0),ms(c,0),ms(ab,0);
rep(i,0,l)
scanf("%d",&a[i]);
rep(i,0,n)
scanf("%d",&b[i]);
rep(i,0,m)
scanf("%d",&c[i]);
k = 0;
rep(i,0,l)
{
rep(j,0,n)
{
ab[k++] = a[i] + b[j];
}
}
sort(ab,ab+k);
sort(c,c+m);
printf("Case %d:\n",cas++);
scanf("%d",&q);
while(q--)
{ //在ab数组二分查找 x - c[i]
f = 0;
scanf("%d",&x);
for(int j=0;j<m;j++)
{
int pos = lower_bound(ab,ab+k,x-c[j]) - ab;
if(ab[pos] == x - c[j])
{
f = 1;
break;
} }
if(f) printf("YES\n");
else printf("NO\n");
}
}
}

【手写二分版本】:

#include<cstdio>
#include<string>
#include<cstdlib>
#include<cmath>
#include<iostream>
#include<cstring>
#include<set>
#include<queue>
#include<algorithm>
#include<vector>
#include<map>
#include<cctype>
#include<stack>
#include<sstream>
#include<list>
#include<assert.h>
#include<bitset>
#include<numeric>
#define debug() puts("++++")
#define gcd(a,b) __gcd(a,b)
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define fi first
#define se second
#define pb push_back
#define sqr(x) ((x)*(x))
#define ms(a,b) memset(a,b,sizeof(a))
#define sz size()
#define be begin()
#define pu push_up
#define pd push_down
#define cl clear()
#define lowbit(x) -x&x
#define all 1,n,1
#define rep(i,x,n) for(int i=(x); i<(n); i++)
#define in freopen("in.in","r",stdin)
#define out freopen("out.out","w",stdout)
using namespace std;
typedef long long ll;
typedef unsigned long long ULL;
typedef pair<int,int> P;
const int INF = 0x3f3f3f3f;
const ll LNF = 1e18;
const int maxn = 1e3 + 20;
const int maxm = 1e6 + 10;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int dx[] = {-1,1,0,0,1,1,-1,-1};
const int dy[] = {0,0,1,-1,1,-1,1,-1};
int dir[4][2] = {{0,1},{0,-1},{-1,0},{1,0}};
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; ll quickpow(ll a, ll b) {
ll ans = 0;
while (b > 0) {
if (b % 2)ans = ans * a;
b = b / 2;
a = a * a;
}
return ans;
} int gcd(int a, int b) {
return b == 0 ? a : gcd(b, a%b);
} bool cmp(int a, int b) {
return a > b;
}
int l,n,m,q,x;
int a[maxn],b[maxn],c[maxn];
int ab[250005];
/*
ai + bj + ck = x ——>
ai + bj = x -ck
1 2 3
1 2 3
1 2 3
*/
int main()
{
int cas = 1;
while(~scanf("%d%d%d",&l,&n,&m))
{ int f = 0, k;
ms(a,0),ms(b,0),ms(c,0),ms(ab,0);
rep(i,0,l)
scanf("%d",&a[i]);
rep(i,0,n)
scanf("%d",&b[i]);
rep(i,0,m)
scanf("%d",&c[i]);
k = 0;
rep(i,0,l)
{
rep(j,0,n)
{
ab[k++] = a[i] + b[j];
}
}
sort(ab,ab+k);
sort(c,c+m);
printf("Case %d:\n",cas++);
scanf("%d",&q);
while(q--)
{ //在ab数组二分查找 x - c[i]
f = 0;
scanf("%d",&x);
for(int j=0;j<m;j++)
{
int l = 0, r = k - 1, mid;
while(l <= r)
{
mid = (l+r)/2;
if(ab[mid] == x-c[j])
{
f=1;break;
}
else if(ab[mid]<x-c[j]) l=mid+1;
else if(ab[mid]>x-c[j]) r=mid-1;
}
if(f) break; }
if(f) printf("YES\n");
else printf("NO\n");
}
}
}

HDU 2141 Can you find it?【二分查找是否存在ai+bj+ck=x】的更多相关文章

  1. HDU 2141 Can you find it? [二分]

    Can you find it? Give you three sequences of numbers A, B, C, then we give you a number X. Now you n ...

  2. C - 啥~ 渣渣也想找玩数字 HDU - 2141(有序序列枚举 + 二分优化查找)

    题目描述 可爱的演演又来了,这次他想问渣渣一题... 如果给你三个数列 A[],B[],C[],请问对于给定的数字 X,能否从这三个数列中各选一个,使得A[i]+B[j]+C[k]=X? 输入 多组数 ...

  3. hdu 4190 Distributing Ballot Boxes(贪心+二分查找)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4190 Distributing Ballot Boxes Time Limit: 20000/1000 ...

  4. Holedox Eating HDU - 4302 2012多校C 二分查找+树状数组/线段树优化

    题意 一个长度$n<=1e5$的数轴,$m<=1e5$个操作 有两种一些操作 $0$  $x$ 在$x$放一个食物 $1$ 一个虫子去吃最近的食物,如果有两个食物一样近,不转变方向的去吃 ...

  5. HDU 5265 pog loves szh II (二分查找)

    [题目链接]click here~~ [题目大意]在给定 的数组里选两个数取模p的情况下和最大 [解题思路]: 思路见官方题解吧~~ 弱弱献上代码: Problem : 5265 ( pog love ...

  6. HDU 3280 Equal Sum Partitions(二分查找)

    Equal Sum Partitions Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Oth ...

  7. hdu 2141:Can you find it?(数据结构,二分查找)

    Can you find it? Time Limit: 10000/3000 MS (Java/Others)    Memory Limit: 32768/10000 K (Java/Others ...

  8. hdu 2141 Can you find it?(二分查找变例)

    Problem Description Give you three sequences of numbers A, B, C, then we give you a number X. Now yo ...

  9. Can you find it? HDU - 2141 (二分查找)

    Give you three sequences of numbers A, B, C, then we give you a number X. Now you need to calculate ...

随机推荐

  1. 导致SQL执行慢的原因

    索引对大数据的查询速度的提升是非常大的,Explain可以帮你分析SQL语句是否用到相关索引. 索引类似大学图书馆建书目索引,可以提高数据检索的效率,降低数据库的IO成本.MySQL在300万条记录左 ...

  2. [Leetcode] subsets 求数组所有的子集

    Given a set of distinct integers, S, return all possible subsets. Note: Elements in a subset must be ...

  3. Spring事务管理—aop:pointcut expression 常见切入点表达式及事务说明

    Spring事务管理—aop:pointcut expression 常见切入点表达式及事物说明 例: <aop:config>  <aop:pointcut expression= ...

  4. B. Minimum Ternary String (这个B有点狠)

    B. Minimum Ternary String time limit per test 1 second memory limit per test 256 megabytes input sta ...

  5. codeforces 1065D

    题目链接:https://codeforces.com/problemset/problem/1065/D 题意:给你一个又1~n^2组成的n行n列的矩阵,你可以走日字型,直线,斜线,现在要求你从1走 ...

  6. 小程序根据input输入,动态设置按钮的样式

    [需求]实现当手机号已填写和协议已勾选时,“立即登录”按钮变亮,按钮可点击:若有一个不满足,按钮置灰,不可点击:实现获取短信验证码,倒计时提示操作:对不满足要求内容进行toast弹窗提示. <v ...

  7. C#与数据库的连接的三种方式

    学习了.net的知识从C#一直到MVC,我一直觉得基础很重要,最近有复习一下数据库连接的三种方式 1 返回结果集的一张表 public static DataTable ExecuteDataTabl ...

  8. Nim博弈(nim游戏)

    http://blog.csdn.net/qiankun1993/article/details/6765688 NIM 游戏 重点结论:对于一个Nim游戏的局面(a1,a2,...,an),它是P- ...

  9. loj6100 「2017 山东二轮集训 Day1」第一题

    传送门:https://loj.ac/problem/6100 [题解] 我们考虑维护从某个端点开始的最长满足条件的长度,如果知道了这个东西显然我们可以用主席树来对每个节点建棵关于右端点的权值线段树, ...

  10. [目前未找到题目]扩展KMP模板

    procedure build_next; begin lena:=length(a);lenb:=length(b); next[]:=lenb;next[]:=lenb-; to lenb- ] ...