[SHOI2014]信号增幅仪
题目大意:
平面直角坐标系中散落着n个点,一个椭圆的长半轴在对于x轴逆时针旋转α度的角度上,且长半轴是短半轴的k倍。
问短半轴至少要多长才能覆盖所有的点?
思路:
首先把坐标顺时针旋转α度,然后把所有点的横坐标缩小k倍,就变成了最小圆覆盖问题。
#include<cmath>
#include<cstdio>
#include<cctype>
#include<algorithm>
inline int getint() {
register char ch;
register bool neg=false;
while(!isdigit(ch=getchar())) if(ch=='-') neg=true;
register int x=ch^'';
while(isdigit(ch=getchar())) x=(((x<<)+x)<<)+(ch^'');
return neg?-x:x;
}
const int N=;
const double eps=1e-;
struct Point {
double x,y;
};
Point p[N];
inline double sqr(const double &x) {
return x*x;
}
inline double dis(const Point &a,const Point &b) {
return sqrt(sqr(a.x-b.x)+sqr(a.y-b.y));
}
inline Point mid(const Point &a,const Point &b) {
return (Point){(a.x+b.x)/,(a.y+b.y)/};
}
inline Point out(const Point &a,const Point &b,const Point &c) {
Point ret;
ret.x=((sqr(a.x)+sqr(a.y))*b.y+(sqr(c.x)+sqr(c.y))*a.y+(sqr(b.x)+sqr(b.y))*c.y-(sqr(a.x)+sqr(a.y))*c.y-(sqr(c.x)+sqr(c.y))*b.y-(sqr(b.x)+sqr(b.y))*a.y)/(a.x*b.y+b.x*c.y+c.x*a.y-a.x*c.y-b.x*a.y-c.x*b.y)/;
ret.y=((sqr(a.x)+sqr(a.y))*c.x+(sqr(c.x)+sqr(c.y))*b.x+(sqr(b.x)+sqr(b.y))*a.x-(sqr(a.x)+sqr(a.y))*b.x-(sqr(c.x)+sqr(c.y))*a.x-(sqr(b.x)+sqr(b.y))*c.x)/(a.x*b.y+b.x*c.y+c.x*a.y-a.x*c.y-b.x*a.y-c.x*b.y)/;
return ret;
}
int main() {
const int n=getint();
for(register int i=;i<n;i++) {
p[i]=(Point){getint(),getint()};
}
const double alpha=getint()*M_PI/,k=getint();
for(register int i=;i<n;i++) {
const double x=p[i].x,y=p[i].y;
p[i]=(Point){(x*cos(alpha)+y*sin(alpha))/k,y*cos(alpha)-x*sin(alpha)};
}
std::random_shuffle(&p[],&p[n]);
Point c=p[];
double r=;
for(register int i=;i<n;i++) {
if(dis(c,p[i])<r+eps) continue;
c=p[i];
r=;
for(register int j=;j<i;j++) {
if(dis(c,p[j])<r+eps) continue;
c=mid(p[i],p[j]);
r=dis(c,p[j]);
for(register int k=;k<j;k++) {
if(dis(c,p[k])<r+eps) continue;
c=out(p[i],p[j],p[k]);
r=dis(c,p[k]);
}
}
}
printf("%.3f\n",r);
return ;
}
[SHOI2014]信号增幅仪的更多相关文章
- BZOJ 3564: [SHOI2014]信号增幅仪 最小圆覆盖
3564: [SHOI2014]信号增幅仪 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=3564 Description 无线网络基站在 ...
- 【bzoj3564】 [SHOI2014]信号增幅仪
题目描述: 无线网络基站在理想状况下有效信号覆盖范围是个圆形.而无线基站的功耗与圆的半径的平方成正比. 现给出平面上若干网络用户的位置,请你选择一个合适的位置建设无线基站.... 就在你拿起键盘准备开 ...
- BZOJ3564 : [SHOI2014]信号增幅仪
先把所有点绕原点逆时针旋转(360-a)度,再把所有点横坐标除以放大倍数p,最后用随机增量法求最小圆覆盖即可. 时间复杂度期望$O(n)$ #include<cstdio> #includ ...
- [BZOJ 3564] [SHOI2014] 信号增幅仪 【最小圆覆盖】
题目链接:BZOJ - 3564 题目分析 求最小椭圆覆盖,题目给定了椭圆的长轴与 x 轴正方向的夹角,给定了椭圆长轴与短轴的比值. 那么先将所有点旋转一个角度,使椭圆长轴与 x 轴平行,再将所有点的 ...
- BZOJ 3564: [SHOI2014]信号增幅仪(随机增量法)
如果是个圆的话好办,如果是拉成椭圆呢?直接压回去!!! 然后随机增量法就行了 CODE: #include<cstdio> #include<iostream> #includ ...
- 2018.10.15 bzoj3564: [SHOI2014]信号增幅仪(坐标处理+最小圆覆盖)
传送门 省选考最小圆覆盖? 亦可赛艇(你们什么都没看见) 在大佬的引领下成功做了出来. 就是旋转坐标使椭圆的横轴跟xxx轴平行. 然后压缩横坐标使得其变成一个圆. 然后跑最小覆盖圆就可以了. 注意题目 ...
- 洛谷P4288||bzoj3564 [SHOI2014]信号增幅仪
bzoj3564 洛谷P4288 可以旋转一下坐标轴使得x轴与长轴方向对齐,然后将所有的横坐标变为自身除以放大倍数,然后就做一个最小圆覆盖 #include<cstdio> #includ ...
- [LOJ 2190] 「SHOI2014」信号增幅仪
[LOJ 2190] 「SHOI2014」信号增幅仪 链接 链接 题解 坐标系直到 \(x\) 轴与椭圆长轴平行 点的坐标变换用旋转公式就可以了 因为是椭圆,所以所有点横坐标除以 \(p\) 然后最小 ...
- LOJ#2190. 「SHOI2014」信号增幅仪(最小圆覆盖)
题面 传送门 题解 我连椭圆是个啥都不知道导致这么简单一道题我一点思路都没有-- 我们把坐标系旋转一下,让半长轴成为新的\(x\)轴,也就是说所有点都绕原点逆时针旋转\(360-a\)度,然后再把所有 ...
随机推荐
- hibernate连接mysql,自动建表失败
hibernate的列名使用了mysql的关键字.
- Java super和this
this this是自身的一个对象,代表对象本身,可以理解为:指向对象本身的一个指针. this的用法在java中大体可以分为3种: 1.普通的直接引用 这种就不用讲了,this相当于是指向当前对象本 ...
- canvas知识02:图片放大镜效果
效果截图: JS代码: <script> // 初始化canvas01和上下文环境 var cav01 = document.getElementById('cav01'); var cx ...
- JS 中 call 和 apply 的理解和使用
本文受到了知乎问题 如何理解和熟练运用js中的call及apply? 的启发. obj.call(thisObj, arg1, arg2, ...); obj.apply(thisObj, [arg1 ...
- Web应用程序开发,基于Ajax技术的JavaScript树形控件
感谢http://www.cnblogs.com/dgrew/p/3181769.html#undefined 在Web应用程序开发领域,基于Ajax技术的JavaScript树形控件已经被广泛使用, ...
- [Codevs1519]过路费解题报告|最小生成树|LCA
在某个遥远的国家里,有 n个城市.编号为 1,2,3,…,n.这个国家的政府修建了m 条双向道路,每条道路连接着两个城市.政府规定从城市 S 到城市T需要收取的过路费为所经过城市之间道路长度的最大值. ...
- bzoj 1301 后缀数组
比较裸的后缀数组. /************************************************************** Problem: User: BLADEVIL La ...
- bzoj 2324 ZJOI 营救皮卡丘 费用流
题的大概意思就是给定一个无向图,边有权值,现在你有k个人在0点,要求走到n点,且满足 1:人们可以分头行动,可以停在某一点不走了 2:当你走到x时,前x-1个点必须全部走过(不同的人走过也行,即分两路 ...
- mysql七:数据备份、pymysql模块
阅读目录 一 IDE工具介绍 二 MySQL数据备份 三 pymysql模块 一 IDE工具介绍 生产环境还是推荐使用mysql命令行,但为了方便我们测试,可以使用IDE工具 下载链接:https:/ ...
- UVALIVE 5096 Volume
This time your job is to calculate the volume of a special object. The object consists of two orthog ...