Codeforces 920 G List Of Integers
题目描述
Let's denote as L(x,p)L(x,p) an infinite sequence of integers yy such that gcd(p,y)=1gcd(p,y)=1 and y>xy>x (where gcdgcd is the greatest common divisor of two integer numbers), sorted in ascending order. The elements of L(x,p)L(x,p) are 11 -indexed; for example, 99 , 1313 and 1515 are the first, the second and the third elements of L(7,22)L(7,22) , respectively.
You have to process tt queries. Each query is denoted by three integers xx , pp and kk , and the answer to this query is kk-th element of L(x,p)L(x,p) .
输入输出格式
输入格式:
The first line contains one integer tt ( 1<=t<=300001<=t<=30000 ) — the number of queries to process.
Then tt lines follow. ii -th line contains three integers xx , pp and kk for ii -th query ( 1<=x,p,k<=10^{6}1<=x,p,k<=106 ).
输出格式:
Print tt integers, where ii -th integer is the answer to ii -th query.
输入输出样例
3
7 22 1
7 22 2
7 22 3
9
13
15
5
42 42 42
43 43 43
44 44 44
45 45 45
46 46 46
187
87
139
128
141 二分+容斥就ojbk了,考虑到<=10^6的数最多有10种质因子,我们就把p质因子分解一下,然后二分第k大的满足条件的数y是多少。
需要写一个用来计算前i个数中有多少数与p互质的函数get,那么当get(y)-get(x)>=k时,更新答案并调整右边界;否则调整左边界。
之所以这么做的原因是,我们需要找到get(y)-get(x)==k的最小的y,这个y才是要求的第k大的与p互质的数。 还有不是很明白为什么时限是5s(虽然看洛谷上好多人都是卡着时限过的),反正我最慢的一个点也才跑了300+ms,如图可能是因为我加了一些预处理来优化计算过程吧hhhh,请不要把我想成用循环展开什么缓存dark技巧来卡常的毒瘤人士(虽然迫不得已的时候会用一些dark卡常技巧)
#include<bits/stdc++.h>
#define ll long long
#define maxn 1000005
using namespace std;
int num,d[66],f[2066],jc[2066];
int T,n,a,p,k,ci[30];
int l,r,mid,ans,now;
const int inf=1000000000; inline void dvd(){
num=0,n=sqrt(p+0.5);
for(int i=2;i<=n;i++) if(!(p%i)){
d[++num]=i;
while(!(p%i)) p/=i;
if(p==1) break;
} if(p!=1) d[++num]=p; for(int S=0;S<ci[num];S++){
jc[S]=1;
for(int j=0;j<num;j++) if(ci[j]&S) jc[S]*=d[j+1];
}
} //<=x的数中有多少与p互质
inline int get(int x){
int an=0;
for(int s=0;s<ci[num];s++) an+=f[s]*(x/jc[s]);
return an;
} int main(){
ci[0]=1;
for(int i=1;i<=20;i++) ci[i]=ci[i-1]<<1;
f[0]=1;
for(int i=1;i<=2055;i++) f[i]=-f[i^(i&-i)]; scanf("%d",&T);
while(T--){
scanf("%d%d%d",&a,&p,&k);
dvd();
l=a+1,r=inf,now=get(a);
while(l<=r){
mid=l+r>>1;
if(get(mid)-now<k) l=mid+1;
else ans=mid,r=mid-1;
} printf("%d\n",ans);
} return 0;
}
Codeforces 920 G List Of Integers的更多相关文章
- Educational Codeforces Round 37 G. List Of Integers (二分,容斥定律,数论)
G. List Of Integers time limit per test 5 seconds memory limit per test 256 megabytes input standard ...
- [codeforces 549]G. Happy Line
[codeforces 549]G. Happy Line 试题描述 Do you like summer? Residents of Berland do. They especially love ...
- CodeForces 794 G.Replace All
CodeForces 794 G.Replace All 解题思路 首先如果字符串 \(A, B\) 没有匹配,那么二元组 \((S, T)\) 合法的一个必要条件是存在正整数对 \((x,y)\), ...
- codeforces 920 EFG 题解合集 ( Educational Codeforces Round 37 )
E. Connected Components? time limit per test 2 seconds memory limit per test 256 megabytes input sta ...
- Codeforces 1207 G. Indie Album
Codeforces 1207 G. Indie Album 解题思路 离线下来用SAM或者AC自动机就是一个单点加子树求和,套个树状数组就好了,因为这个题广义SAM不能存在 \(len[u] = l ...
- Educational Codeforces Round 37-G.List Of Integers题解
一.题目 二.题目链接 http://codeforces.com/contest/920/problem/G 三.题意 给定一个$t$,表示有t次查询.每次查询给定一个$x$, $p$, $k$,需 ...
- codeforces 659 G. Fence Divercity 组合数学 dp
http://codeforces.com/problemset/problem/659/G 思路: f(i,0/1,0/1) 表示到了第i个,要被切的块开始了没有,结束了没有的状态的方案数 递推看代 ...
- Codeforces 803 G. Periodic RMQ Problem
题目链接:http://codeforces.com/problemset/problem/803/G 大致就是线段树动态开节点. 然后考虑到如果一个点还没有出现过,那么这个点显然未被修改,就将这个点 ...
- Codeforces 954 G. Castle Defense
http://codeforces.com/problemset/problem/954/G 二分答案 检验的时候,从前往后枚举,如果发现某个位置的防御力<二分的值,那么新加的位置肯定是越靠后越 ...
随机推荐
- 原生ajax方法封装
/** * @function ajax request * @fields ajaxName:请求名称,method:请求方法,headers:setRequestHeader自定义部分,url:接 ...
- mysql5.7.22以上版本忘记密码时这样修改
1.关闭mysql服务 net stop mysql 2.找到mysql安装路径找到 my.ini 打开在 [mysqld] 下添加 skip-grant-tables 跳过密码校验 3.登陆mysq ...
- 支持jsonP的Controller写法
支持jsonP的Controller写法 package com.taotao.sso.controller; import org.apache.commons.lang3.StringUtils; ...
- Faster R-CNN教程
Faster R-CNN教程 最后更新日期:2016年4月29日 本教程主要基于python版本的faster R-CNN,因为python layer的使用,这个版本会比matlab的版本速度慢10 ...
- POJ3159:Candies(差分约束)
Candies Time Limit: 1500MS Memory Limit: 131072K Total Submissions: 39666 Accepted: 11168 题目链接:h ...
- rpm的使用:查询、安装、卸载、升级
RPM 有五种操作模式,分别为:安装.卸载.升级.查询和验证. RPM 安装操作 命令: rpm -i 需要安装的包文件名 举例如下: rpm -i example.rpm 安装 example.rp ...
- 单个回调函数中返回多个Request以及Item
import scrapy from myproject.items import MyItem class MySpider(scrapy.Spider): name = 'example.com' ...
- 查看jar包源码
1.Maven项目 如下图设置后,它会自动下载源文件,这样就能看到了 2.传统Java项目 2.1.安装 Jad 下载 Jad :http://varaneckas.com/jad/ 解压到任意目录即 ...
- KM算法讲解
对于二分图,我们可以用匈牙利来求出来最大匹配,但是如果给定每条边一个权值,我们要求这张图的最大匹配最大(小)权,单纯的用匈牙利就没法解决了,当然用费用流也可以做,但是代码较长,在处理完全二分图的时候时 ...
- mhn 实际部署记录
新增蜜罐时需要注意,server/collector_v2.py中的DEFAULT_CHANNELS,没有注册这个事件是接收不到新蜜罐的消息的
可能是因为我加了一些预处理来优化计算过程吧hhhh,请不要把我想成用循环展开什么缓存dark技巧来卡常的毒瘤人士(虽然迫不得已的时候会用一些dark卡常技巧)