给出一个数字,用FIB数列各项加加减减来得到。

问最少要多少个(可以重复使用)

大概试了一下,fibonacci数列的增长是很快的,大概到了90+项就超过了题目范围……

所以每次找一个最近的fibonacci数试一下就好,实测跑得飞快。

 #include<bits/stdc++.h>
using namespace std;
typedef long long ll;
ll f[],n,m;
inline ll read(){
ll f=,x=;char ch;
do{ch=getchar();if(ch=='-')f=-;}while(ch<''||ch>'');
do{x=x*+ch-'';ch=getchar();}while(ch>=''&&ch<='');
return f*x;
}
int work(ll x){
if(!x)return x;int i;
for(i=;f[i]<x;i++);
return work(min(f[i]-x,x-f[i-]))+;
}
int main(){
f[]=;f[]=;
for(int i=;i<=;i++)f[i]=f[i-]+f[i-];
int T=read();
while(T--){
n=read();
printf("%d\n",work(n));
}
return ;
}

【bzoj2796】 [Poi2012]Fibonacci Representation的更多相关文章

  1. 【BZOJ2791】[Poi2012]Rendezvous 倍增

    [BZOJ2791][Poi2012]Rendezvous Description 给定一个n个顶点的有向图,每个顶点有且仅有一条出边.对于顶点i,记它的出边为(i, a[i]).再给出q组询问,每组 ...

  2. 【BZOJ2792】[Poi2012]Well 二分+双指针法

    [BZOJ2792][Poi2012]Well Description 给出n个正整数X1,X2,...Xn,可以进行不超过m次操作,每次操作选择一个非零的Xi,并将它减一. 最终要求存在某个k满足X ...

  3. 【BZOJ2797】[Poi2012]Squarks 暴力乱搞

    [BZOJ2797][Poi2012]Squarks Description 设有n个互不相同的正整数{X1,X2,...Xn},任取两个Xi,Xj(i≠j),能算出Xi+Xj.现在所有取法共n*(n ...

  4. 【BZOJ2801】[Poi2012]Minimalist Security BFS

    [BZOJ2801][Poi2012]Minimalist Security Description 给出一个N个顶点.M条边的无向图,边(u,v)有权值w(u,v),顶点i也有权值p(i),并且对于 ...

  5. 【BZOJ2793】[Poi2012]Vouchers 调和级数

    [BZOJ2793][Poi2012]Vouchers Description 考虑正整数集合,现在有n组人依次来取数,假设第i组来了x人,他们每个取的数一定是x的倍数,并且是还剩下的最小的x个.正整 ...

  6. 【BZOJ2799】[Poi2012]Salaries 乱搞

    [BZOJ2799][Poi2012]Salaries Description 给出一棵n个结点的有根树,结点用正整数1~n编号.每个结点有一个1~n的正整数权值,不同结点的权值不相同,并且一个结点的 ...

  7. 【BZOJ2803】[Poi2012]Prefixuffix 结论题

    [BZOJ2803][Poi2012]Prefixuffix Description 对于两个串S1.S2,如果能够将S1的一个后缀移动到开头后变成S2,就称S1和S2循环相同.例如串ababba和串 ...

  8. 【BZOJ2794】[Poi2012]Cloakroom 离线+背包

    [BZOJ2794][Poi2012]Cloakroom Description 有n件物品,每件物品有三个属性a[i], b[i], c[i] (a[i]<b[i]).再给出q个询问,每个询问 ...

  9. 【BZOJ2790】[Poi2012]Distance 筛素数+调和级数

    [BZOJ2790][Poi2012]Distance Description 对于两个正整数a.b,这样定义函数d(a,b):每次操作可以选择一个质数p,将a变成a*p或a/p, 如果选择变成a/p ...

随机推荐

  1. Hadoop伪分布式集群

    一.HDFS伪分布式环境搭建 Hadoop分布式文件系统(HDFS)被设计成适合运行在通用硬件(commodity hardware)上的分布式文件系统.它和现有的分布式文件系统有很多共同点.但同时, ...

  2. CodeForces-1132C Painting the Fence

    题目链接 https://vjudge.net/problem/CodeForces-1132C 题面 Description You have a long fence which consists ...

  3. Android基本组件

    ①Activity和View负责与用户交互 ②Service通常位于后台,拥有独立的生命周期,为其他组件提供后台服务和监控其他组件运行状态 ③BroadcastReceiver广播消息接收器,类似事件 ...

  4. python json模块 超级详解

    JSON(JavaScript Object Notation, JS 对象标记) 是一种轻量级的数据交换格式.JSON的数据格式其实就是python里面的字典格式,里面可以包含方括号括起来的数组,也 ...

  5. lintcode-123-单词搜索

    123-单词搜索 给出一个二维的字母板和一个单词,寻找字母板网格中是否存在这个单词. 单词可以由按顺序的相邻单元的字母组成,其中相邻单元指的是水平或者垂直方向相邻.每个单元中的字母最多只能使用一次. ...

  6. Elasticsearch中的分词器比较及使用方法

    Elasticsearch 默认分词器和中分分词器之间的比较及使用方法 https://segmentfault.com/a/1190000012553894 介绍:ElasticSearch 是一个 ...

  7. Oracle 同环比排除分母0

    A 本期 B 同期(环期) 同比(环比) =  (A-B)/B DECODE(NVL(B,0),0,0,ROUND(((A-B)/B),4)), --环比 DECODE(NVL(B),0,0,ROUN ...

  8. 【bzoj2064】分裂【压状dp】

    Description 背景: 和久必分,分久必和... 题目描述: 中国历史上上分分和和次数非常多..通读中国历史的WJMZBMR表示毫无压力. 同时经常搞OI的他把这个变成了一个数学模型. 假设中 ...

  9. webstorm vue cli 热更新不起作用解决办法

    在网上搜到的:原因是(webstorm默认保存在临时文件)  连接  1.打开设置 2.把 System Settings => Synchornization => 最后一项勾去掉

  10. readelf用法小记

    By francis_hao    Feb 14,2017 显示ELF文件的信息 用法概述 readelf和objdump类似,不过,readelf会显示更详细的信息,而且独立于BFD库,因此当BFD ...