Problem 2221 RunningMan

Accept: 17    Submit: 52
Time Limit: 1000 mSec    Memory Limit : 32768 KB

 Problem Description

ZB loves watching RunningMan! There's a game in RunningMan called 100 vs 100.

There are two teams, each of many people. There are 3 rounds of fighting, in each round the two teams send some people to fight. In each round, whichever team sends more people wins, and if the two teams send the same amount of people, RunningMan team wins. Each person can be sent out to only one round. The team wins 2 rounds win the whole game. Note, the arrangement of the fighter in three rounds must be decided before the whole game starts.

We know that there are N people on the RunningMan team, and that there are M people on the opposite team. Now zb wants to know whether there exists an arrangement of people for the RunningMan team so that they can always win, no matter how the opposite team arrange their people.

 Input

The first line contains an integer T, meaning the number of the cases. 1 <= T <= 50.

For each test case, there's one line consists of two integers N and M. (1 <= N, M <= 10^9).

 Output

For each test case, Output "Yes" if there exists an arrangement of people so that the RunningMan team can always win. "No" if there isn't such an arrangement. (Without the quotation marks.)

 Sample Input

2
100 100
200 100

 Sample Output

No
Yes

 Hint

In the second example, the RunningMan team can arrange 60, 60, 80 people for the three rounds. No matter how the opposite team arrange their 100 people, they cannot win.

 Source

第六届福建省大学生程序设计竞赛-重现赛(感谢承办方华侨大学)

 
题目大意:给你两个数,代表R,O两组的总人数n,m,现在玩三轮游戏,三局两胜,如果R组派出的人数大于等于本轮O组派出的人数,那么R组获胜,否则O组获胜,问你是否存在一种安排,不论O组怎么派队,R组都胜利。存在即输出Yes,否则输出No。
 
解题思路:现在将R组分为3队,人数为x,y,z。那么如果满足题意,则R组中每两个队伍都必须获胜,另外一队必输。
需同时满足: x+y >= m-1    表示:x,y两队胜,z队输。z队队员0个人跟O组除了跟x,y对战的另一队人数为1人对战,失败。
       x+z >= m-1
       y+z >= m-1 且 x+y+z = n
联立方程组,解得 n >= 3*(m-1)/2
 
#include<stdio.h>
#include<algorithm>
#include<string.h>
using namespace std;
int main(){
int T,n,m;
scanf("%d",&T);
while(T--){
scanf("%d%d",&n,&m);
if(n >= 1.5*(m-1)){
puts("Yes");
}else{
puts("No");
}
}
return 0;
}

  

 
 

FZU 2221—— RunningMan——————【线性规划】的更多相关文章

  1. FZU 2221 RunningMan(跑男)

    Problem Description 题目描述 ZB loves watching RunningMan! There's a game in RunningMan called 100 vs 10 ...

  2. Problem 2221 RunningMan(fuzoj)

     Problem 2221 RunningMan Accept: 130    Submit: 404Time Limit: 1000 mSec    Memory Limit : 32768 KB ...

  3. FZU Problem 2221 RunningMan(贪心)

    一开始就跑偏了,耽误了很长时间,我和队友都想到博弈上去了...我严重怀疑自己被前几个博弈题给洗脑了...贪心的做法其实就是我们分两种情况,因为A先出,所以B在第一组可以选择是赢或输,如果要输,那直接不 ...

  4. D - 下个也是签到题 FZU - 2221(博弈)

    ZB loves watching RunningMan! There's a game in RunningMan called 100 vs 100. There are two teams, e ...

  5. FZOJ--2221-- RunningMan(水题)

    Problem 2221 RunningMan Accept: 4    Submit: 10 Time Limit: 1000 mSec    Memory Limit : 32768 KB Pro ...

  6. FZU 2137 奇异字符串 后缀树组+RMQ

    题目连接:http://acm.fzu.edu.cn/problem.php?pid=2137 题解: 枚举x位置,向左右延伸计算答案 如何计算答案:对字符串建立SA,那么对于想双延伸的长度L,假如有 ...

  7. FZU 1914 单调队列

    题目链接:http://acm.fzu.edu.cn/problem.php?pid=1914 题意: 给出一个数列,如果它的前i(1<=i<=n)项和都是正的,那么这个数列是正的,问这个 ...

  8. ACM: FZU 2105 Digits Count - 位运算的线段树【黑科技福利】

     FZU 2105  Digits Count Time Limit:10000MS     Memory Limit:262144KB     64bit IO Format:%I64d & ...

  9. FZU 2112 并查集、欧拉通路

    原题:http://acm.fzu.edu.cn/problem.php?pid=2112 首先是,票上没有提到的点是不需要去的. 然后我们先考虑这个图有几个连通分量,我们可以用一个并查集来维护,假设 ...

随机推荐

  1. 制作百度地图离线JavaScript API加载本地瓦片地图

    全面介绍,请看下列介绍地址,改写目前最新版本的百度V2.0地图,已全面实现离线操作,能到达在线功能的95%以上 http://api.jjszd.com:8081/apituiguang/gistg. ...

  2. Vue 父组件向子组件传值,传方法,传父组件整体

    父子组件传值 1.父组件调用子组件时绑定属性,例如-> :title="title" 2.子组件中在props中声明title:props:['title','msg'] 3 ...

  3. 家用wifi信号覆盖增强扩展实用指南

    家用wifi信号覆盖增强扩展实用指南 现在网上很多号称穿墙王的无线路由器,但是一般用起来效果都不理想,其实最主要的原因还是家里面一般每个房间不大,但是墙比较多.并且一般也没有一个所谓的中心点放置路由器 ...

  4. 上课总结-模电chapter 2

    1.无明显失真时电压放大倍数——输出与输入电压的变化量之比 .无明显失真时 电流放大倍数——输出与输入电流的变化量之比 3.最大输出幅度 ①无明显失真时最大输出电压(或最大输出电流) ②交流有效值(U ...

  5. 移动端页面怎么适配ios页面

    1.viewport 简单粗暴的方式:<meta name="viewport" content="width=320,maximum-scale=1.3,user ...

  6. phpstudy 部署php项目

    网站根目录

  7. 类4(可变数据成员/基于const的重载)

    可变数据成员: 有时我们希望能修改某个类的数据成员,即使是在一个 const 成员函数内.可以通过在变量的声明中加入 mutable 关键字来声明一个可变数据成员.mutable 是为突破 const ...

  8. Python正则表达式匹配日期与时间

    #!/usr/bin/env python # -*- coding: utf-8 -*- __author__ = 'Randy' import re from datetime import da ...

  9. 将符合json的字符串转化为json对象

    变量data是符合json格式的字符串 var data="[key:value]"; 第一种方式: var jsonData = eval("("+data+ ...

  10. Sql server inner join......on

    --查询的时候,如果表中有重名的列,此时,应该在通过 表名.列名 的方式来限定指定的列是哪张表中的.select PhoneNum.pid, PhoneNum.pname, PhoneNum.pcel ...