[洛谷P2604][ZJOI2010]网络扩容
题目大意:给定一张有向图,每条边都有一个容量C和一个扩容费用W。这里扩容费用是指将容量扩大1所需的费用。
求: 1.在不扩容的情况下,1到N的最大流; 2.将1到N的最大流增加K所需的最小费用。
题解:先跑最大流,在残余网络上跑费用流
卡点:无
C++ Code:
#include<cstdio>
#include<cctype>
#include<cstring>
#define maxn 5010
using namespace std;
const int inf=0x3f3f3f3f;
int n,m,k;
int u[5010],v[5010],w[5010],c[5010];
int d[maxn],pre[maxn];
int q[maxn],h,t;
int st=1,ed;
int head[maxn],cnt=2;
struct Edge{
int to,nxt,w,cost;
}e[5010<<2];
bool vis[maxn];
char ch;
void read(int &x){
ch=getchar();
while (!isdigit(ch))ch=getchar();
for (x=ch^48,ch=getchar();isdigit(ch);ch=getchar())x=x*10+(ch^48);
}
inline int min(int a,int b){return a<b?a:b;}
void add(int a,int b,int c,int d){
e[cnt]=(Edge){b,head[a],c,d};head[a]=cnt;
e[cnt^1]=(Edge){a,head[b],0,-d};head[b]=cnt^1;
cnt+=2;
}
bool bfs(){
memset(d,0,sizeof d);
d[q[h=t=1]=st]=1;
while (h<=t){
int x=q[h++];
if (x==ed)return true;
for (int i=head[x];i;i=e[i].nxt){
int to=e[i].to;
if ((!d[to])&&e[i].w){
d[to]=d[x]+1;
q[++t]=to;
}
}
}
return d[ed];
}
int dfs(int x,int low){
if (x==ed||!low)return low;
int res=0,w;
for (int i=head[x];i;i=e[i].nxt){
int to=e[i].to;
if ((d[to]==d[x]+1)&&e[i].w){
w=dfs(to,min(low-res,e[i].w));
e[i].w-=w;
e[i^1].w+=w;
res+=w;
if (res==low)return res;
}
}
if (!res)d[x]=-1;
return res;
}
void dinic(){
int ans=0;
while (bfs())ans+=dfs(st,inf);
printf("%d ",ans);
}
bool spfa(){
memset(d,0x3f,sizeof d);
d[st]=0;
vis[q[h=t=1]=st]=true;
while (h<=t){
int x=q[h++];vis[x]=false;
for (int i=head[x];i;i=e[i].nxt){
int to=e[i].to;
if (e[i].w&&d[to]>d[x]+e[i].cost){
d[to]=d[x]+e[i].cost;
pre[to]=i;
if (!vis[to]){
vis[to]=true;
q[++t]=to;
}
}
}
}
return d[ed]!=inf;
}
int update(){
int ans,mf=inf;
for (int i=pre[ed];i;i=pre[e[i^1].to])mf=min(mf,e[i].w);
ans=mf*d[ed];
for (int i=pre[ed];i;i=pre[e[i^1].to])e[i].w-=mf,e[i^1].w+=mf;
return ans;
}
void MCMF(){
int ans=0;
while (spfa())ans+=update();
printf("%d\n",ans);
}
int main(){
read(n),read(m),read(k);
ed=n;
for (int i=1;i<=m;i++)read(u[i]),read(v[i]),read(c[i]),read(w[i]),add(u[i],v[i],c[i],0);
dinic();
for (int i=1;i<=m;i++)add(u[i],v[i],inf,w[i]);
st=0;
add(st,1,k,0);
MCMF();
return 0;
}
[洛谷P2604][ZJOI2010]网络扩容的更多相关文章
- 洛谷 P2604 [ZJOI2010]网络扩容 解题报告
P2604 [ZJOI2010]网络扩容 题目描述 给定一张有向图,每条边都有一个容量C和一个扩容费用W.这里扩容费用是指将容量扩大1所需的费用.求: 1. 在不扩容的情况下,1到N的最大流: 2. ...
- 洛谷$P2604\ [ZJOI2010]$网络扩容 网络流
正解:网络流 解题报告: 传送门$QwQ$ 昂第一问跑个最大流就成不说$QwQ$ 然后第二问,首先原来剩下的边就成了费用为0的边?然后原来的所有边连接的两点都给加上流量为$inf$费用为$w$的边,保 ...
- 洛谷 P2604 [ZJOI2010]网络扩容
题目描述 给定一张有向图,每条边都有一个容量C和一个扩容费用W.这里扩容费用是指将容量扩大1所需的费用.求: 1. 在不扩容的情况下,1到N的最大流: 2. 将1到N的最大流增加K所需的最小扩容费用. ...
- 【题解】Luogu P2604 [ZJOI2010]网络扩容
原题传送门:P2604 [ZJOI2010]网络扩容 这题可以说是板题 给你一个图,先让你求最大流 再告诉你,每条边可以花费一些代价,使得流量加一 问至少花费多少代价才能使最大流达到k 解法十分简单 ...
- BZOJ 1834 Luogu P2604 [ZJOI2010]网络扩容 (最小费用最大流)
题目连接: (luogu) https://www.luogu.org/problemnew/show/P2604 (bzoj) https://www.lydsy.com/JudgeOnline/p ...
- P2604 [ZJOI2010]网络扩容
思路 简单的费用流问题,跑出第一问后在残量网络上加边求最小费用即可 代码 #include <cstdio> #include <algorithm> #include < ...
- 洛谷 P1546 最短网络 Agri-Net
题目链接 https://www.luogu.org/problemnew/show/P1546 题目背景 农民约翰被选为他们镇的镇长!他其中一个竞选承诺就是在镇上建立起互联网,并连接到所有的农场.当 ...
- [Luogu 2604] ZJOI2010 网络扩容
[Luogu 2604] ZJOI2010 网络扩容 第一问直接最大流. 第二问,添加一遍带费用的边,边权 INF,超级源点连源点一条容量为 \(k\) 的边来限流,跑费用流. 大约是第一次用 nam ...
- 洛谷P1546 最短网络 Agri-Net(最小生成树,Kruskal)
洛谷P1546 最短网络 Agri-Net 最小生成树模板题. 直接使用 Kruskal 求解. 复杂度为 \(O(E\log E)\) . #include<stdio.h> #incl ...
随机推荐
- 关于<meta name="viewport" content="width= device-width,user-scalable= 0,initial-scale= 1.0,minimum-scale= 1.0">
<meta name="viewport" content=" width= device-width, user-scalable= 0, initial-sca ...
- 分享一个PC端六格密码输入框写法
如图.我们一般做商城类的项目不免会用到支付密码输入框,我研究了下并决定发上来,也当作是自己成长路上的一点小小的记录.本次介绍的是基于vue的项目 html: <template> < ...
- Centos7安装FastDFS
离线安装包准备: 将相关的安装包上传到 /usr/local 目录,安装包下载 并解压到当前目录 1.安装 gcc yum install -y gcc gcc-c++ 2.安装 perl yum i ...
- Hive(1)-基本概念
一. 什么是Hive Hive:由Facebook开源用于解决海量结构化日志的数据统计. Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张表,并提供类SQL查询功能. 本 ...
- 2.1 进程控制之fork创建子进程
fork()函数 目标:熟悉fork创建一个和多个子进程子线程 函数原型:pid_t fork(void); 返回值:成功返回:① 父进程返回子进程的ID(非负) ②子进程返回 0 : 失败返回-1. ...
- JavaScript之原型 Prototype
1.我们所创建的每一个函数,解析器都会向函数中添加一个属性prototype.这个属性对应着一个对象,这个对象就是我们所谓的原型对象.如果函索作为普通函数调用prototype没有任何作用. 当函数以 ...
- 将List中的数据更新到数据库中
List中有相应的数据,更新到数据库如下: 1.根据关键字查找后删除: foreach (var item in objSelList) { ADDaAn da = db.ADDaAns.Find(i ...
- Git中从远程的分支获取最新的版本到本地——两种命令
Git中从远程的分支获取最新的版本到本地有这样2个命令: 1. git fetch:相当于是从远程获取最新版本到本地,不会自动merge Git fetch origin master git log ...
- Messy Code in Windows Server 2008 R2 English Edition
We always use Windows Server 2008 R2 English operation system. And it doesn't have any problem ...
- JMeter上传图片
JMeter怎样上传图片? 请注意图片的路径要与.jmx脚本的目录保持一致, 或者放在JMeter的bin目录下. 协议:http 服务器名称或IP:www.abcdef.com 方法:POST 路径 ...