AtCoder 神题汇总
记录平时打 AtCoder 比赛时遇到的一些神题。
Tenka1 Programmer Contest 2019 D Three Colors
题目大意
有 $n$ 个正整数 $a_1, a_2,\dots, a_n$($3\le n\le 300$,$1\le a_i \le 300$)。现在要把每个数涂成红,绿,蓝,三种颜色之一。将同色的数之和分别记作 $R,G,B$。试求使得 $R,G,B$ 是某三角形的三边长的涂色方案。结果模 $998244353$ 。
分析
这道题的正解是考虑不能构成三角形的涂色方案的数量。拿总方案数 $3^n$ 减去这个数量。
注意到 $R,G,B$ 三个数之和固定,将此和记作 $S$,即 $S = \sum_{i = 1}^{n} a_i$ 。
$R,G,B$ 不能构成三角形的充要条件是 $R,G,B$ 中某个数大于等于 $ S/2$ 。
又注意到,当 $S$ 是奇数时,$S/2$ 不是整数,上述充要条件变为 $R,G,B$ 中某个数大于 $S/2$ 。
我们先来考虑 $R, G, B$ 三者中某个数大于 $S/2$ 的方案数。
注意到 $R,G,B$ 三者中最多有一个数可能大于 $S/2$ 。由于染色方案的对称性,我们不妨先考虑 $R > S/2$ 的染色方案数。我们可以用类似于背包的 DP 求出使得 $R$ 等于某个确定值的染色方案数。令 $f[i][j]$ 表示对前 $i$ 个数染色,使得其中被染成红色的数之和为 $j$ 的染色方案数。那么 $3 \sum_{ R = \floor{S/2} + 1}^{S} f[n][R]$ 即为使得 $R, G, B$ 三者中某个数大于 $S/2$ 的染色方案数。
若 $S$ 是偶数,我们可以沿用上述方法求出使得 $R = S/2$ 的染色方案数,即 $f[n][S/2]$ 。但是若直接把 $3f[n][S/2]$ 加到总数里边,会导致重复计数。具体地说,这样做将使得 $R = S/2, G = S/2, B = 0$,$R = S/2, G = 0, B = S/2$ 和 $R = 0, G = S/2, B = S/2$ 这三种情况被计了两次。而这三种情况的数量即从给定的 $n$ 个数中选择一些数使得其和为 $S/2$ 的方案数,用类似于背包的 DP 可以求出这个数量。将此数量记作 $k$ 。
总之,若 $S$ 为奇数,答案是 $ 3^n - 3 \sum_{ R = \floor{S/2} + 1}^{S} f[n][R] $;若 $S$ 为偶数,答案是 $3^n - 3\sum_{ R = S/ 2}^{S} f[n][R] + 3k$ 。
ExaWizards 2019 C Snuke the Wizard
Key observation: 最后剩下的小球最初所在的盒子必定是连续的一段。
将盒子从左到右编号为 $1$ 到 $n$ 。
如果最初在 $i$ 号盒子里的小球,从左侧消失,那么 $1$ 号到 $i$ 号盒子中的小球必定都从左边消失了。
如果最初在 $i$ 号盒子里的小球,从右侧消失,那么 $i$ 号到 $n$ 号盒子中小球必定都从右边消失了。
我们可以二分搜索最后剩下的小球最初所在的范围的左右边界。
AtCoder 神题汇总的更多相关文章
- AtCoder 杂题训练
前言: 因为要普及了,今年没一等就可以退役去学文化课了,所以暑假把历年noip普及组都刷了一遍,离noip还有50+天,想弄点强化训练什么的. 想了想,就这些天学文化课之余有空就把AtCoder之前那 ...
- Codeforces & Atcoder神仙题做题记录
鉴于Codeforces和atcoder上有很多神题,即使发呆了一整节数学课也是肝不出来,所以就记录一下. AGC033B LRUD Game 只要横坐标或者纵坐标超出范围就可以,所以我们只用看其中一 ...
- POJ 2484 A Funny Game(神题!)
一开始看这道博弈题的时候我就用很常规的思路去分析了,首先先手取1或者2个coin后都会使剩下的coin变成线性排列的长条,然后无论双方如何操作都是把该线条分解为若干个子线条而已,即分解为若干个子游戏而 ...
- BUAA 724 晴天小猪的神题(RMQ线段树)
BUAA 724 晴天小猪的神题 题意:中文题,略 题目链接:http://acm.buaa.edu.cn/problem/724/ 思路:对于询问x,y是否在同一区间,可以转换成有没有存在一个区间它 ...
- Bzoj 4408: [Fjoi 2016]神秘数 可持久化线段树,神题
4408: [Fjoi 2016]神秘数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 177 Solved: 128[Submit][Status ...
- 【CF913F】Strongly Connected Tournament 概率神题
[CF913F]Strongly Connected Tournament 题意:有n个人进行如下锦标赛: 1.所有人都和所有其他的人进行一场比赛,其中标号为i的人打赢标号为j的人(i<j)的概 ...
- [agc007f] Shik and Copying String 模拟神题
Description "全"在十分愉快打工,第0天,给了他一个仅有小写字母构成的长度为N的字符串S0,在之后的第i天里,"全"的工作是将Si−1复制一份到 ...
- NOIP模拟题汇总(加厚版)
\(NOIP\)模拟题汇总(加厚版) T1 string 描述 有一个仅由 '0' 和 '1' 组成的字符串 \(A\),可以对其执行下列两个操作: 删除 \(A\)中的第一个字符: 若 \(A\)中 ...
- 老男孩IT教育-每日一题汇总
老男孩IT教育-每日一题汇总 第几天 第几周 日期 快速访问链接 第123天 第二十五周 2017年8月25日 出现Swap file….already exists以下错误如何解决? 第122天 2 ...
随机推荐
- Eclipse中各种文件的注释与取消注释的快捷键
Eclipse中各种文件的注释与取消注释的快捷键 Java文件: 注释和取消注释的快捷键都是:CTRL + / 或 Shift+Ctrl+C JS文件: 注释和取消注释的快捷键都是:CTRL + / ...
- Mysqldump自定义导出n条记录
很多时候DBA需要导出部分记录至开发.测试环境,因数据量需求较小,如果原库的记录多,且表数量也多,在用mysqldump命令导出时可以添加一个where参数,自定义导出n条记录,而不必全量导出. 示例 ...
- C#中在WebClient中使用post发送数据实现方法
很多时候,我们需要使用C#中的WebClient 来收发数据,WebClient 类提供向 URI 标识的任何本地.Intranet 或 Internet 资源发送数据以及从这些资源接收数据的公共方法 ...
- c# WebBrowser开发参考资料--杂七杂八
c# WebBrowser开发参考资料 http://hi.baidu.com/motiansen/blog/item/9e99a518233ca3b24aedbca9.html=========== ...
- html5 获取和设置data-*属性值的四种方法讲解
1.获取id的对象 2.需要获取的就是data-id 和 dtat-vice-id的值 一:getAttribute()方法 const getId = document.getElementById ...
- Druid单机环境安装指南
1.下载单机环境必备工具 下载druid-0.10.1-bin.tar.gz和tranquility-distribution-0.8.2.tgz插件 http://druid.io/download ...
- Eclipse报错:An internal error occurred during: "Building workspace". Java heap space),卡死解决办法
在项目工程的根目录下,找到.project,用记事本打开,把两处删除掉: 第一处: <buildCommand> <name>org.eclipse.wst.jsdt.core ...
- 3 web服务器:静态文件
1.处理客户端请求数据 >>> s = "GET / HTTP/1.1\r\nHost: 127.0.0.1:8080\r\nConnection: keep-alive& ...
- abtest-system后台系统设计与搭建
本文来自网易云社区 作者:刘颂 1 项目背景: 2017年5月:客户端提出增加https&dns以及双cdn业务功能 后台配合实现使用disconf配置 针对不同的域名或者请求配置不同的htt ...
- 教你用Bootstrap开发漂亮的前端界面
Bootstrap介绍: Bootstrap 是最受欢迎的 HTML.CSS 和 JS 框架,用于开发响应式布局.移动设备优先的 WEB 项目. Bootstrap的特点: 一.预处理脚本:虽然可以直 ...