After Farmer John realized that Bessie had installed a "tree-shaped" network among his N (1 <= N <= 10,000) barns at an incredible cost, he sued Bessie to mitigate his losses.

Bessie, feeling vindictive, decided to sabotage Farmer John's network by cutting power to one of the barns (thereby disrupting all the connections involving that barn). When Bessie does this, it breaks the network into smaller pieces, each of which retains full connectivity within itself. In order to be as disruptive as possible, Bessie wants to make sure that each of these pieces connects together no more than half the barns on FJ.

Please help Bessie determine all of the barns that would be suitable to disconnect.

Input

* Line 1: A single integer, N. The barns are numbered 1..N.

* Lines 2..N: Each line contains two integers X and Y and represents a connection between barns X and Y.

Output

* Lines 1..?: Each line contains a single integer, the number (from 1..N) of a barn whose removal splits the network into pieces each having at most half the original number of barns. Output the barns in increasing numerical order. If there are no suitable barns, the output should be a single line containing the word "NONE".

Sample Input

10
1 2
2 3
3 4
4 5
6 7
7 8
8 9
9 10
3 8

Sample Output

3
8

Hint

INPUT DETAILS:

The set of connections in the input describes a "tree": it connects all the barns together and contains no cycles.

OUTPUT DETAILS:

If barn 3 or barn 8 is removed, then the remaining network will have one piece consisting of 5 barns and two pieces containing 2 barns. If any other barn is removed then at least one of the remaining pieces has size at least 6 (which is more than half of the original number of barns, 5).

 
 #include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
const int maxn = 1e5 + ;
const int INF = 0x7fffffff;
int n, dp[maxn][], head[maxn], tot, ans[maxn];
struct node {
int v, next;
} edge[maxn];
void init() {
tot = ;
memset(head, -, sizeof(head));
}
void add(int u, int v) {
edge[tot].v = v;
edge[tot].next = head[u];
head[u] = tot++;
edge[tot].v = u;
edge[tot].next = head[v];
head[v] = tot++;
}
int k = ;
int solve(int x, int fa) {
int sum = , maxs = -;
for (int i = head[x] ; i != - ; i = edge[i].next) {
int v = edge[i].v;
if (v == fa) continue;
int cost = solve(v, x);
if (cost > maxs) maxs = cost;
sum += cost;
}
if (n - sum > maxs) maxs = n - sum;
if (maxs <= n / ) ans[k++] = x;
return sum;
}
int main() {
while(scanf("%d", &n) != EOF) {
init();
for (int i = ; i < n - ; i++) {
int u, v;
scanf("%d%d", &u, &v);
add(u, v);
}
solve(, -);
if (k == ) printf("NONE\n");
else {
sort(ans, ans + k);
for (int i = ; i < k ; i++)
printf("%d\n", ans[i]);
}
}
return ;
}

poj 2378 Tree Cutting 树形dp的更多相关文章

  1. POJ 2378.Tree Cutting 树形dp 树的重心

    Tree Cutting Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4834   Accepted: 2958 Desc ...

  2. POJ 2378 Tree Cutting 3140 Contestants Division (简单树形dp)

    POJ 2378 Tree Cutting:题意 求删除哪些单点后产生的森林中的每一棵树的大小都小于等于原树大小的一半 #include<cstdio> #include<cstri ...

  3. hdu 5909 Tree Cutting [树形DP fwt]

    hdu 5909 Tree Cutting 题意:一颗无根树,每个点有权值,连通子树的权值为异或和,求异或和为[0,m)的方案数 \(f[i][j]\)表示子树i中经过i的连通子树异或和为j的方案数 ...

  4. [poj3107/poj2378]Godfather/Tree Cutting树形dp

    题意:求树的重心(删除该点后子树最大的最小) 解题关键:想树的结构,删去某个点后只剩下它的子树和原树-此树所形成的数,然后第一次dp求每个子树的节点个数,第二次dp求解答案即可. 此题一开始一直T,后 ...

  5. POJ 2378 Tree Cutting (DFS)

    题目链接:http://poj.org/problem?id=2378 一棵树,去掉一个点剩下的每棵子树节点数不超过n/2.问有哪些这样的点,并按照顺序输出. dfs回溯即可. //#pragma c ...

  6. HDU - 5909 Tree Cutting (树形dp+FWT优化)

    题意:树上每个节点有权值,定义一棵树的权值为所有节点权值异或的值.求一棵树中,连通子树值为[0,m)的个数. 分析: 设\(dp[i][j]\)为根为i,值为j的子树的个数. 则\(dp[i][j\o ...

  7. HDU.5909.Tree Cutting(树形DP FWT/点分治)

    题目链接 \(Description\) 给定一棵树,每个点有权值,在\([0,m-1]\)之间.求异或和为\(0,1,...,m-1\)的非空连通块各有多少个. \(n\leq 1000,m\leq ...

  8. POJ 2378 Tree Cutting (树的重心,微变形)

    题意: 给定一棵树,n个节点,若删除点v使得剩下的连通快最大都不超过n/2,则称这样的点满足要求.求所有这样的点,若没有这样的点,输出NONE. 思路: 只需要拿“求树的重心”的代码改一行就OK了.因 ...

  9. POJ 2378 Tree Cutting 子树统计

    题目大意:给出一棵树.将树中的一个节点去掉之后,这棵树会分裂成一些联通块.求去掉哪些点之后.全部联通块的大小不超过全部节点的一半.并按顺序输出. 思路:基础的子树统计问题,仅仅要深搜一遍就能够出解.这 ...

随机推荐

  1. ruby Logger日志

    1.logger创建 # 输出到标准输出 logger = Logger.new(STDERR) logger = Logger.new(STDOUT) # 输出到指定文件 logger = Logg ...

  2. EAS集锦

    前言 之前看过的相关BOS开发文档,整理了一些常用的API,一直没有来得及放上来,现在把整理的文件放上来,以备忘查看,分享.闲话少说,上干货! ps 图片不方便查看的话,可以拖住图片,加载到浏览器新页 ...

  3. Hadoop启动后无法启动NodeManager

    在配置完Hadoop集群后,使用命令:“start-all.sh”进行启动集群.然后使用命令:“jps”查看进程启动情况,发现没有NodeManager 只需要使用命令:cd  /usr/local/ ...

  4. RTSC和XDCTool的理解

    1. 在使用TI的开发工具CCS中,里面有几个重要的概念,一直不太清晰,RTSC是什么,XDCTool是什么?包是什么?包的版本为啥都是4位的(比如mathlib_c66x_3_0_1_1)?star ...

  5. Linux使用imagemagick的convert命令压缩图片,节省服务器空间

    1,安装imagemagick yum install ImageMagick 2,获取图片 find ./ -regex '.*\(jpg\|JPG\|png\|jpeg\)' -size +500 ...

  6. CentOS Linux release 7.5.1804下安装MySQL5.7.24

    1.环境查看: 2.卸载自带MariaDB数据库: 3.下载MySQL5.7.14安装包: 4.使用wget工具下载需要安装数据库的依赖包: 5.解压缩bundel包: 6.按照顺序进行安装: 7.数 ...

  7. Windows Server 2008 R2(x64) IIS7+PHP5(FastCGI)环境搭建

    相关软件下载: 1.PHP下载地址: http://windows.php.net/downloads/releases/php-5.4.4-nts-Win32-VC9-x86.zip 如果是win2 ...

  8. CSP201512-1: 数位之和

    引言:CSP(http://www.cspro.org/lead/application/ccf/login.jsp)是由中国计算机学会(CCF)发起的"计算机职业资格认证"考试, ...

  9. adb usage

    使用安卓调试及自动化,不可避免的要使用adb,说明看起来很麻烦,进行简单记录,以便时候不时之需. usb连接手机调试就很简单了.首先,在手机端开启usb调试,即点击安卓版本项7次,就可以显示开发者菜单 ...

  10. Node.js的require()的工作原理

    大多数人都知道Node.js中require()函数做什么的,但是有多少人知道它的工作原理呢?我们每天使用它加载库包和模块,但是它的内部行为原理很神秘. 我们追寻Node模块系统的核心: module ...