POJ1459:Power Network(多源点多汇点的最大流)
Power Network
| Time Limit: 2000MS | Memory Limit: 32768K | |
| Total Submissions: 31086 | Accepted: 15986 |
题目链接:http://poj.org/problem?id=1459
Description:
A power network consists of nodes (power stations, consumers and dispatchers) connected by power transport lines. A node u may be supplied with an amount s(u) >= 0 of power, may produce an amount 0 <= p(u) <= pmax(u) of power, may consume an amount 0 <= c(u) <= min(s(u),cmax(u)) of power, and may deliver an amount d(u)=s(u)+p(u)-c(u) of power. The following restrictions apply: c(u)=0 for any power station, p(u)=0 for any consumer, and p(u)=c(u)=0 for any dispatcher. There is at most one power transport line (u,v) from a node u to a node v in the net; it transports an amount 0 <= l(u,v) <= lmax(u,v) of power delivered by u to v. Let Con=Σuc(u) be the power consumed in the net. The problem is to compute the maximum value of Con.

An example is in figure 1. The label x/y of power station u shows that p(u)=x and pmax(u)=y. The label x/y of consumer u shows that c(u)=x and cmax(u)=y. The label x/y of power transport line (u,v) shows that l(u,v)=x and lmax(u,v)=y. The power consumed is Con=6. Notice that there are other possible states of the network but the value of Con cannot exceed 6.
Input:
There are several data sets in the input. Each data set encodes a power network. It starts with four integers: 0 <= n <= 100 (nodes), 0 <= np <= n (power stations), 0 <= nc <= n (consumers), and 0 <= m <= n^2 (power transport lines). Follow m data triplets (u,v)z, where u and v are node identifiers (starting from 0) and 0 <= z <= 1000 is the value of lmax(u,v). Follow np doublets (u)z, where u is the identifier of a power station and 0 <= z <= 10000 is the value of pmax(u). The data set ends with nc doublets (u)z, where u is the identifier of a consumer and 0 <= z <= 10000 is the value of cmax(u). All input numbers are integers. Except the (u,v)z triplets and the (u)z doublets, which do not contain white spaces, white spaces can occur freely in input. Input data terminate with an end of file and are correct.
Output:
For each data set from the input, the program prints on the standard output the maximum amount of power that can be consumed in the corresponding network. Each result has an integral value and is printed from the beginning of a separate line.
Sample Input:
2 1 1 2 (0,1)20 (1,0)10 (0)15 (1)20
7 2 3 13 (0,0)1 (0,1)2 (0,2)5 (1,0)1 (1,2)8 (2,3)1 (2,4)7
(3,5)2 (3,6)5 (4,2)7 (4,3)5 (4,5)1 (6,0)5
(0)5 (1)2 (3)2 (4)1 (5)4
Sample Output:
15
6
Hint:
The sample input contains two data sets. The first data set encodes a network with 2 nodes, power station 0 with pmax(0)=15 and consumer 1 with cmax(1)=20, and 2 power transport lines with lmax(0,1)=20 and lmax(1,0)=10. The maximum value of Con is 15. The second data set encodes the network from figure 1.
题意:
有三种点,一种是生产者,一种是消费者,一种是中转站,经过生产者的流会增加,经过消费者的流会减少,中转站就不会增加也不会减小。
问被消费者减少的流最大为多少。
题解:
我们知道,在一个网络流中,除开源点和汇点,其它点的进出流值都是相等的。但在这里,经过生产者流会增加,经过消费者流会减少。
所以我们考虑给每个生产者连一条边,权值就为其生产的权值;而给每个消费者连出一条边,权值为其消耗的权值。这样就可以满足流网络的性质。
最后就会多出两个点,分别为超级源点和超级汇点,我们要求连出的边上流量的最大值,所以不妨让消费者与超级汇点相连。
最后直接跑个最大流就好了。
注意下输入。
代码如下:
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
#include <queue>
#define INF 99999999
#define t 200
using namespace std;
typedef long long ll;
const int N = ;
int head[N],d[N];
int tot,n,np,nc,m;
struct Edge{
int v,c,next;
}e[(N*N)<<];
void adde(int u,int v,int w){
e[tot].v=v;e[tot].c=w;e[tot].next=head[u];head[u]=tot++;
e[tot].v=u;e[tot].c=;e[tot].next=head[v];head[v]=tot++;
}
int bfs(){
memset(d,,sizeof(d));d[]=;
queue <int > q;q.push();
while(!q.empty()){
int u=q.front();q.pop();
for(int i=head[u];i!=-;i=e[i].next){
int v=e[i].v;
if(e[i].c> && !d[v]){
d[v]=d[u]+;
q.push(v);
}
}
}
return d[t]!=;
}
int dfs(int s,int a){
if(s==t || a==) return a;
int flow=,f;
for(int i=head[s];i!=-;i=e[i].next){
int v=e[i].v;
if(d[v]!=d[s]+) continue ;
f=dfs(v,min(a,e[i].c));
if(f>){
e[i].c-=f;
e[i^].c+=f;
flow+=f;
a-=f;
if(a==) break;
}
}
if(!flow) d[s]=-;
return flow;
}
int Dinic(){
int flow=;
while(bfs()) flow+=dfs(,INF);
return flow;
}
int main(){
while(scanf("%d%d%d%d",&n,&np,&nc,&m)!=EOF){
tot=;memset(head,-,sizeof(head));
for(int i=,u,v,w;i<=m;i++){
while(getchar()!='(');
scanf("%d,%d)%d",&u,&v,&w);
u++;v++;
adde(u,v,w);
}
for(int i=,u,w;i<=np;i++){
while(getchar()!='(');
scanf("%d)%d",&u,&w);
u++;
adde(,u,w);
}
for(int i=,v,w;i<=nc;i++){
while(getchar()!='(');
scanf("%d)%d",&v,&w);
v++;
adde(v,t,w);
}
printf("%d\n",Dinic());
}
return ;
}
POJ1459:Power Network(多源点多汇点的最大流)的更多相关文章
- POJ1459 Power Network —— 最大流
题目链接:https://vjudge.net/problem/POJ-1459 Power Network Time Limit: 2000MS Memory Limit: 32768K Tot ...
- POJ 1459 Power Network / HIT 1228 Power Network / UVAlive 2760 Power Network / ZOJ 1734 Power Network / FZU 1161 (网络流,最大流)
POJ 1459 Power Network / HIT 1228 Power Network / UVAlive 2760 Power Network / ZOJ 1734 Power Networ ...
- POJ1459 Power Network(网络最大流)
Power Network Time Limit: 2000MS Memory Limit: 32768K Total S ...
- POJ1459 - Power Network
原题链接 题意简述 原题看了好几遍才看懂- 给出一个个点,条边的有向图.个点中有个源点,个汇点,每个源点和汇点都有流出上限和流入上限.求最大流. 题解 建一个真 · 源点和一个真 · 汇点.真 · 源 ...
- POJ-1459 Power Network(最大流)
https://vjudge.net/problem/POJ-1459 题解转载自:優YoU http://user.qzone.qq.com/289065406/blog/1299339754 解题 ...
- poj1459 Power Network (多源多汇最大流)
Description A power network consists of nodes (power stations, consumers and dispatchers) connected ...
- poj1459 Power Network --- 最大流 EK/dinic
求从电站->调度站->消费者的最大流,给出一些边上的容量.和电站和消费者能够输入和输出的最大量. 加入一个超级源点和汇点,建边跑模板就能够了. 两个模板逗能够. #include < ...
- [poj1459]Power Network(多源多汇最大流)
题目大意:一个网络,一共$n$个节点,$m$条边,$np$个发电站,$nc$个用户,$n-np-nc$个调度器,每条边有一个容量,每个发电站有一个最大负载,每一个用户也有一个最大接受量.问最多能供给多 ...
- 2018.07.06 POJ 1459 Power Network(多源多汇最大流)
Power Network Time Limit: 2000MS Memory Limit: 32768K Description A power network consists of nodes ...
随机推荐
- echarts实用小技巧,控制字符串长度,限定整数等
限定横坐标文本字符长度 xAxis : [ axisLabel:{ formatter: function (value) { var maxlength=6; if (value.length> ...
- 【转】谈谈 iOS 中图片的解压缩
转自:http://blog.leichunfeng.com/blog/2017/02/20/talking-about-the-decompression-of-the-image-in-ios/ ...
- 1698-Just a Hook 线段树(区间替换)
Just a Hook Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total ...
- ORB-SLAM (四)tracking跟踪解析
初始化完成后,对于相机获取当前图像mCurrentFrame,通过跟踪匹配上一帧mLastFrame特征点的方式,可以获取一个相机位姿的初始值:为了兼顾计算量和跟踪鲁棒性,处理了三种模型: 1. Tr ...
- SharePoint显示错误信息
在SharePoint项目中,一般如果发生错误,SharePoint会弹出它自定义的报错页面,一般就显示"Something went wrong",如果光是看这一句话, ...
- exchange 2007迁移到2010
标签:exchange 2007 2010 原创作品,允许转载,转载时请务必以超链接形式标明文章 原始出处 .作者信息和本声明.否则将追究法律责任.http://zpf666.blog.51cto.c ...
- 关于相对布局RelativeLayout的各种属性介绍
RelativeLayout相对布局是个人觉得在android布局中比较常用且好用的一个,当然如果想让布局更漂亮是需要多种布局混合搭建的,这里就需要更深入的学习了,在这只介绍下有关相对布局的东西. 相 ...
- 菜鸟级appium 必看
之所以写这个,因为太多新人,appium环境半天都搭建不好,版本问题,兼容问题等等. 自己的解决方案:1 官网下载nodejs,建议安装长期支持版 2 进入appium官网,点击下载,跳转到githu ...
- Python网络编程(socketserver、TFTP云盘、HTTPServer服务器模型)
HTTP协议? HTTP是一个应用层协议,由请求和响应构成,是一个标准的客户端服务器模型.HTTP是一个无状态的协议. 通常承载于TCP协议之上,有时也承载于TLS或SSL协议层之上,这个时候,就成了 ...
- 梳理 Opengl ES 3.0 (一)宏观着眼
Opengl ES 可以理解为是在嵌入式设备上工作的一层用于处理图形显示的软件,是Opengl 的缩水版本. 下图是它的工作流程示意图: 注意图中手机左边的EGL Layer Opengl ES是跨平 ...