BZOJ2337: [HNOI2011]XOR和路径 期望概率dp 高斯
这个题让我认识到我以往对于图上期望概率的认识是不完整的,我之前只知道正着退还硬生生的AC做过的所有图,那么现在让我来说一下逆退,一般来说对于概率性的东西都只是正推,因为有了他爸爸才有了他,而对于期望性的东西可以说是从终点开始每个点都是以这个点为起点到终点的期望,那么就可以是有本节点开花遗传和继承。
本题中说求异或,那么根据异或的一般思路,一位一位的搞,每一位不是一就是二我么可以求从这个点到终点这一位是1的期望也就是概率了
#include<cstdio>
#include<cstring>
#include<iostream>
#define N 105
#define M 10005
using namespace std;
typedef double D;
D a[N][N],b[N],ans;
int head[N],t,bang[N],n,m;
struct T
{
int to,next,w;
}c[M<<];
inline void add(int x,int y,int z)
{
c[++t].to=y;
c[t].next=head[x];
head[x]=t;
bang[x]++;
c[t].w=z;
}
inline void Init()
{
scanf("%d%d",&n,&m);
for(int i=;i<=m;i++)
{
int x,y,z;
scanf("%d%d%d",&x,&y,&z);
add(x,y,z);
if(x!=y)
add(y,x,z);
}
}
inline D abs(D x)
{
return x<0.0?0.0-x:x;
}
inline void swap(D &x,D &y)
{
D temp=x;
x=y;
y=temp;
}
void gauss()
{
for(int i=,k=;i<=n;i++,k++)
{
int temp=i;
D need=abs(a[i][k]);
for(int j=i+;j<=n;j++)
if(abs(a[j][k])>need)
need=abs(a[j][k]),temp=j;
if(temp!=i)
for(int j=k;j<=n+;j++)
swap(a[temp][j],a[i][j]);
for(int j=i+;j<=n;j++)
{
need=a[j][k]/a[i][k];
for(int l=k;l<=n+;l++)
a[j][l]-=a[i][l]*need;
}
}
for(int i=n;i>;i--)
{
for(int j=i+;j<=n;j++)
a[i][n+]-=b[j]*a[i][j];
b[i]=a[i][n+]/a[i][i];
}
}
void job(int now)
{
for(int i=;i<=n;i++)
for(int j=;j<=n+;j++)
a[i][j]=0.0;
for(int x=;x<n;x++)
{
for(int i=head[x];i;i=c[i].next)
if(c[i].w&now)
a[x][c[i].to]-=1.0/bang[x],a[x][n+]-=1.0/bang[x];
else
a[x][c[i].to]+=1.0/bang[x];
a[x][x]-=1.0;
}
a[n][n]=1.0;
a[n][n+]=0.0;
gauss();
ans+=b[]*now;
}
inline void work()
{
for(int i=;i<;i++)
job(<<i);
printf("%.3lf",ans);
}
int main()
{
Init();
work();
return ;
}
BZOJ2337: [HNOI2011]XOR和路径 期望概率dp 高斯的更多相关文章
- BZOJ2337 [HNOI2011]XOR和路径 【概率dp + 高斯消元】
题目 题解 突然get到这样路径期望的题目八成是高斯消元 因为路径上的dp往往具有后效性,这就形成了一个方程组 对于本题来说,直接对权值dp很难找到突破口 但是由于异或是位独立的,我们考虑求出每一位的 ...
- 【BZOJ 2337】 2337: [HNOI2011]XOR和路径(概率DP、高斯消元)
2337: [HNOI2011]XOR和路径 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1170 Solved: 683 Description ...
- BZOJ2337: [HNOI2011]XOR和路径(期望 高斯消元)
题意 题目链接 Sol 期望的线性性对xor运算是不成立的,但是我们可以每位分开算 设\(f[i]\)表示从\(i\)到\(n\)边权为1的概率,统计答案的时候乘一下权值 转移方程为 \[f[i] = ...
- 【BZOJ2337】[HNOI2011]XOR和路径 期望DP+高斯消元
[BZOJ2337][HNOI2011]XOR和路径 Description 题解:异或的期望不好搞?我们考虑按位拆分一下. 我们设f[i]表示到达i后,还要走过的路径在当前位上的异或值得期望是多少( ...
- BZOJ2337: [HNOI2011]XOR和路径
题解: 异或操作是每一位独立的,所以我们可以考虑每一位分开做. 假设当前正在处理第k位 那令f[i]表示从i到n 为1的概率.因为不是有向无环图(绿豆蛙的归宿),所以我们要用到高斯消元. 若有边i-& ...
- BZOJ2337:[HNOI2011]XOR和路径(高斯消元)
Description 给定一个无向连通图,其节点编号为 1 到 N,其边的权值为非负整数.试求出一条从 1 号节点到 N 号节点的路径,使得该路径上经过的边的权值的“XOR 和”最大.该路径可以重复 ...
- BZOJ 3270 博物馆 && CodeForces 113D. Museum 期望概率dp 高斯消元
大前提,把两个点的组合看成一种状态 x 两种思路 O(n^7) f[x]表示在某一个点的前提下,这个状态经过那个点的概率,用相邻的点转移状态,高斯一波就好了 O(n^6) 想象成臭气弹,这个和那个的区 ...
- [BZOJ2337][HNOI2011]XOR和路径(概率+高斯消元)
直接不容易算,考虑拆成位处理. 设f[i]表示i到n的期望路径异或和(仅考虑某一位),则$f[y]=\sum\limits_{exist\ x1\to y=0}\frac{f[x1]}{d[x1]}+ ...
- BZOJ2337: [HNOI2011]XOR和路径(高斯消元,期望)
解题思路: Xor的期望???怕你不是在逗我. 按为期望,新技能get 剩下的就是游走了. 代码: #include<cmath> #include<cstdio> #incl ...
随机推荐
- elasticsearch 5.x 系列之五 数据导入导出
一.首先给大家发一个福利,分享一个elasticsearch 数据导出工具. esm github 源码地址: https://github.com/medcl/esm 下载编译好的对应elastic ...
- C语言的结构体,枚举类型在程序中的作用
http://www.xue63.com/xueask-1221-12212854.html 结构和枚举类型从程序实现的角度来说,是用更接近自然语言的方式来表达数据.比如说实现2维空间的点,你可以使用 ...
- 学习CSS
CSS教程 菜鸟教程 通过使用CSS我们可以大大提升网页开发的工作效率 什么是CSS? CSS指层叠样式表(Cascading Style Sheets) 样式定义如何显示HTML元素 样式通常存储在 ...
- 牛客暑假多校第五场A.gpa
一.题意 给出你的N门课程的考试成绩和所占的机电数目.允许你放弃K门课的成绩,要求你的平均学分绩最高能达到多少. Kanade selected n courses in the university ...
- 异步消息处理(Message, Handler, MessageQueue, Looper)
AsyncTask 适用于单线程任务处理,多任务处理还是 Message/Handler 处理方便一些 主要使用方式: 1,创建子类继承自 Handler 类,覆盖 handleMessage(Mes ...
- 初步学习pg_control文件之三
接前文,初步学习pg_control文件之二 继续学习: 研究 DBState,先研究 DB_IN_PRODUCTION ,看它如何出现: 它出现在启动Postmaster时运行的函数处: /* * ...
- 【数据库】 SQL 常用语句之系统语法
[数据库] SQL 常用语句之系统语法 1. 获取取数据库服务器上所有数据库的名字 SELECT name FROM master.dbo.sysdatabases 2. 获取取数据库服务器上所有非系 ...
- 「Haskell 学习」一 环境与大致了解
感谢<Real World Haskell>在网上的免费发布,可以白嫖学Haskell这个久闻大名的函数式编程语言了. 本文运行于openSUSE Tumbleweed下,运行相关命令时留 ...
- ES6 中 export ,export default 区别
1.export与export default均可用于导出常量.函数.文件.模块等: 2.你可以在其它文件或模块中通过import+(常量 | 函数 | 文件 | 模块)名的方式,将其导入,以便能够对 ...
- Python 3基础教程24-读取csv文件
本文来介绍用Python读取csv文件.什么是csv(Comma-Separated Values),也叫逗号分割值,如果你安装了excel,默认会用excel打开csv文件. 1. 我们先制作一个c ...