MySQL in查询优化
https://blog.csdn.net/gua___gua/article/details/47401621
MySQL in查询优化<一>
- 5137
开发说他写了个SQL特别慢,让看看。
- select * from t_channel where id_ in(select distinct cdbh from sjkk_gcjl where jgsj>'2015-01-02 08:00:00' and jgsj<'2015-01-02 12:00:00');
- ......
- 30min+
然后我查询内部SQL,只需要3s+
- mysql> select distinct cdbh from sjkk_gcjl where jgsj>'2015-01-02 08:00:00' and jgsj<'2015-01-02 12:00:00';
- .....
- 1755 rows in set (3.30 sec)
- mysql> select count(*) from t_channel;
- ....
- 12062 rows in set (0.70 sec)
开发写的SQL为啥那么慢呢?看看执行计划
- explain extended select * from t_channel where id_ in(select distinct cdbh from sjkk_gcjl where jgsj>'2015-01-02 08:00:00' and jgsj<'2015-01-02 12:00:00');
- +----+--------------------+-----------+-------+---------------+----------+---------+------+--------+----------+------------------------------+
- | id | select_type | table | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
- +----+--------------------+-----------+-------+---------------+----------+---------+------+--------+----------+------------------------------+
- | 1 | PRIMARY | t_channel | ALL | NULL | NULL | NULL | NULL | 12062 | 100.00 | Using where |
- | 2 | DEPENDENT SUBQUERY | sjkk_gcjl | range | idx_jgsj | idx_jgsj | 8 | NULL | 731868 | 100.00 | Using where; Using temporary |
- +----+--------------------+-----------+-------+---------------+----------+---------+------+--------+----------+------------------------------
看看数据库转换后的语句
- mysql> show warnings;
- SELECT
- `shanghai_full`.`t_channel`.`ID_` AS `ID_`,
- `shanghai_full`.`t_channel`.`Code_` AS `Code_`,
- ...... --这里会列出所有字段
- FROM
- `shanghai_full`.`t_channel`
- WHERE
- < in_optimizer > (
- `shanghai_full`.`t_channel`.`ID_` ,< EXISTS > (
- SELECT DISTINCT
- 1
- FROM
- `shanghai_full`.`sjkk_gcjl`
- WHERE
- (
- (
- `shanghai_full`.`sjkk_gcjl`.`jgsj` > '2015-01-02 08:00:00'
- )
- AND (
- `shanghai_full`.`sjkk_gcjl`.`jgsj` < '2015-01-02 12:00:00'
- )
- AND (
- < CACHE > (
- `shanghai_full`.`t_channel`.`ID_`
- ) = `shanghai_full`.`sjkk_gcjl`.`cdbh`
- )
- )
- )
- );
可见,经过mysql优化器后,in 给转换成exists的方式(mysql认为换成exists更快,呵呵)。
慢的原因:走了exists,查询把外表t_channel做为主表进行全表扫描,每扫描一行数据,然后对子查询进行查询看这条数据是否符合条件。
特别说明:mysql版本是5.5。在5.6中mysql做了改进,将in的这种查询转换为了join。
优化方式一(将in查询转换为连接查询)
- select t1.* from t_channel t1,(select distinct cdbh from sjkk_gcjl where jgsj>'2015-01-02 08:00:00' and jgsj<'2015-01-02 12:00:00') t2 where t1.id_=t2.cdbh;
- ......
- 1264 rows in set (3.30 sec)
- mysql> explain extended select t1.* from t_channel t1,(select distinct cdbh from sjkk_gcjl where jgsj>'2015-01-02 08:00:00' and jgsj<'2015-01-02 12:00:00') t2 where t1.id_www.255055.cn/ =t2.cdbh;
- +----+-------------+------------+--------+---------------+----------+---------+---------+--------+----------+------------------------------+
- | id | select_type | table | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
- +----+-------------+------------+--------+---------------+----------+---------+---------+--------+----------+------------------------------+
- | 1 | PRIMARY | <derived2> | ALL | NULL | NULL | NULL | NULL | 1755 | 100.00 | |
- | 1 | PRIMARY | t1 www.boshenyl.cn | eq_ref | PRIMARY,ID_ | PRIMARY | 74 | t2.cdbh | 1 | 100.00 | Using where |
- | 2 | DERIVED | sjkk_gcjl | range | idx_jgsj | idx_jgsj | 8 | NULL | 731868 | 100.00 | Using where; Using temporary |
- +----+-------------+------------+--------+---------------+----------+---------+---------+--------+----------+------------------------------+
- mysql> show warnings;
- SELECT
- `shanghai_full`.`t1`.`ID_` AS `ID_`,
- ........ ---这里会列出所有字段FROM
- `shanghai_full`.`t_channel` `t1`
- JOIN (
- SELECT DISTINCT
- `shanghai_full`.`sjkk_gcjl`.`cdbh` AS `www.cnzhaotai.com cdbh`
- FROM
- `shanghai_full`.www.fengshen157.com `sjkk_gcjl`
- WHERE
- (
- (
- `shanghai_full`.`sjkk_gcjl`.`jgsj` > '2015-01-02 08:00:00'
- )
- AND (
- `shanghai_full`.`sjkk_gcjl`.`jgsj` < '2015-01-02 12:00:00'
- )
- )
- ) `t2`
- WHERE
- (
- `shanghai_full`.`t1`.`ID_` = www.taohuayuan178.com `t2`.`cdbh`
- );
优化方式二(使用memory引擎的临时表)
- mysql> create temporary table tmp_www.yibaoyule1.com channel engine=memory (select distinct cdbh from sjkk_gcjl where jgsj>'2015-01-02 08:00:00' and jgsj<'2015-01-02 12:00:00');
- Query OK, 1755 rows affected (9.00 sec)
- Records: 1755 Duplicates: 0 Warnings: 0
- mysql> select * from t_channel where id_ in(select * from tmp_channel);
- .....
- 1264 rows in set (0.26 sec)
- mysql> explain extended select * from t_channel where id_ in(select * from tmp_channel);
- +----+--------------------+-------------+------+---------------+------+---------+------+------+----------+-------------+
- | id | select_type | table | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
- +----+--------------------+-------------+------+---------------+------+---------+------+------+----------+-------------+
- | 1 | PRIMARY | t_channel | ALL | NULL | NULL | NULL | NULL | 3224 | 100.00 | Using where |
- | 2 | DEPENDENT SUBQUERY | tmp_channel | ALL | NULL | NULL | NULL | NULL | 20 | 100.00 | Using where |
- +----+--------------------+-------------+------+---------------+------+---------+------+------+----------+-------------+
- mysql> show warnings;
- | Note | 1003 | select `vmc_jiaqi`.`t_channel`.`ID_` AS `ID_`,`vmc_jiaqi`.`t_channel`.`Code_` AS `Code_`,`vmc_jiaqi`.`t_channel`.`HostId_` AS `HostId_`,`vmc_jiaqi`.`t_channel`.`RoadMonitorStationId_` AS `RoadMonitorStationId_`,`vmc_jiaqi`.`t_channel`.`ChannelNo_` AS `ChannelNo_`,`vmc_jiaqi`.`t_channel`.`Name_` AS `Name_`,`vmc_jiaqi`.`t_channel`.`ChannelType_` AS `ChannelType_`,`vmc_jiaqi`.`t_channel`.`Ext_` AS `Ext_`,`vmc_jiaqi`.`t_channel`.`DeviceAddress_` AS `DeviceAddress_`,`vmc_jiaqi`.`t_channel`.`MinSpeed_`www.mhylpt.comS `MinSpeed_`,`vmc_jiaqi`.`t_channel`.`MaxSpeed_` AS `MaxSpeed_`,`vmc_jiaqi`.`t_channel`.`LimitMinRatio_` AS `LimitMinRatio_`,`vmc_jiaqi`.`t_channel`.`LimitMaxRatio_` AS `LimitMaxRatio_`,`vmc_jiaqi`.`t_channel`.`Direction_` AS `Direction_`,`vmc_jiaqi`.`t_channel`.`JcDirection_` AS `JcDirection_`,`vmc_jiaqi`.`t_channel`.`LaneNum_` AS `LaneNum_`,`vmc_jiaqi`.`t_channel`.`FrameDropNum_` AS `FrameDropNum_`,`vmc_jiaqi`.`t_channel`.`RecogizeRectLeft_` AS `RecogizeRectLeft_`,`vmc_jiaqi`.`t_channel`.`RecogizeRectTop_` AS `RecogizeRectTop_`,`vmc_jiaqi`.`t_channel`.`RecogizeRectWidth_` AS `RecogizeRectWidth_`,`vmc_jiaqi`.`t_channel`.`RecogizeRectHeight_` AS `RecogizeRectHeight_`,`vmc_jiaqi`.`t_channel`.`RmpServerIp_` AS `RmpServerIp_`,`vmc_jiaqi`.`t_channel`.`RmpServerPort_` AS `RmpServerPort_`,`vmc_jiaqi`.`t_channel`.`VirtualGateServerId_` AS `VirtualGateServerId_`,`vmc_jiaqi`.`t_channel`.`LaneType_` AS `LaneType_`,`vmc_jiaqi`.`t_channel`.`DeviceType_` AS `DeviceType_`,`vmc_jiaqi`.`t_channel`.`ManufacturerId_` AS `ManufacturerId_`,`vmc_jiaqi`.`t_channel`.`IsLocalSavePicture_` AS `IsLocalSavePicture_`,`vmc_jiaqi`.`t_channel`.`OrderNO_` AS `OrderNO_`,`vmc_jiaqi`.`t_channel`.`channelStatus` AS `channelStatus` from `vmc_jiaqi`.`t_channel` where <in_optimizer>(`vmc_jiaqi`.`t_channel`.`ID_`,<exists>(select 1 from `vmc_jiaqi`.`tmp_channel` where (<cache>(`vmc_jiaqi`.`t_channel`.`ID_`) = `vmc_jiaqi`.`tmp_channel`.`cdbh`)))
注意:第二种方式还是使用了exists的执行方式,所以这种方式没有第一种方式好,在特定的条件下可能会有用处,
MySQL in查询优化的更多相关文章
- php mysql 一个查询优化的简单例子
PHP+Mysql是一个最经常使用的黄金搭档,它们俩配合使用,能够发挥出最佳性能,当然,如果配合Apache使用,就更加Perfect了. 因此,需要做好对mysql的查询优化.下面通过一个简单的例子 ...
- WebAPI调用笔记 ASP.NET CORE 学习之自定义异常处理 MySQL数据库查询优化建议 .NET操作XML文件之泛型集合的序列化与反序列化 Asp.Net Core 轻松学-多线程之Task快速上手 Asp.Net Core 轻松学-多线程之Task(补充)
WebAPI调用笔记 前言 即时通信项目中初次调用OA接口遇到了一些问题,因为本人从业后几乎一直做CS端项目,一个简单的WebAPI调用居然浪费了不少时间,特此记录. 接口描述 首先说明一下,基于 ...
- 查询优化 | MySQL慢查询优化
Explain查询:rows,定位性能瓶颈. 只需要一行数据时,使用LIMIT1. 在搜索字段上建立索引. 使用ENUM而非VARCHAR. 选择区分度高的列作为索引. 采用扩展索引,而不是新建索引 ...
- MySQL 慢查询优化
为什么查询速度会慢 1.慢是指一个查询的响应时间长.一个查询的过程: 客户端发送一条查询给服务器 服务器端先检查查询缓存,如果命中了缓存,则立可返回存储在缓存中的结果.否则进入下一个阶段 服务器端进行 ...
- MySQL SQL查询优化技巧详解
MySQL SQL查询优化技巧详解 本文总结了30个mysql千万级大数据SQL查询优化技巧,特别适合大数据里的MYSQL使用. 1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 ...
- 关于mysql的查询优化
由于工作原因,最近甲方客户那边多次反应了他们那边的系统查询速度慢,经过排除之后,发现他们那边的数据库完全没有用到索引,简直坑得一笔,通过慢查询日志分析,为数据表建立了适当的索引之后,查询速度明显的提高 ...
- 《MySQL慢查询优化》之SQL语句及索引优化
1.慢查询优化方式 服务器硬件升级优化 Mysql服务器软件优化 数据库表结构优化 SQL语句及索引优化 本文重点关注于SQL语句及索引优化,关于其他优化方式以及索引原理等,请关注本人<MySQ ...
- MySQL 的查询优化
说起 MySQL 的查询优化,相信大家收藏了一堆奇技淫巧:不能使用 SELECT *.不使用 NULL 字段.合理创建索引.为字段选择合适的数据类型..... 你是否真的理解这些优化技巧?是否理解它背 ...
- MySQL慢查询优化
MySQL数据库是常见的两个瓶颈是CPU和I/O的瓶颈,CPU在饱和的时候一般发生在大量数据进行比对或聚合时.磁盘I/O瓶颈发生在装入数据远大于内存容量的时候,如果应用分布在网络上,那么查询量相当大的 ...
随机推荐
- vue 导出流文件excel
第一种方法:需要设置响应类型,这里还需要安装 npm install js-file-download --save ,然后引用 var fileDownload = require('js-file ...
- STM32CubeMx配置USART注意的一个问题
HAL_UART_Receive_IT(&huart1, (uint8_t *)aRxBuffer, Number);意思是接收到Number个字节后,触发HAL_UART_RxCpltCal ...
- laravel5.5jwt-auth的使用
laravel5.5 + jwt-auth:dev-develop 安装扩展 composer require tymon/jwt-auth:dev-develop --prefer-source 添 ...
- 免费天气预报API接口
一.中国气象局(http://www.weather.com.cn) 1.实时接口 http://mobile.weather.com.cn/data/sk/101010100.html http:/ ...
- Ajax跨域请求解决方式
前端 jQuery方式 .ajax({ type: "POST", url: "http://xxx.com/api/test", dataType: 'jso ...
- 剑指offer-二进制中1的个数11
题目描述 输入一个整数,输出该数二进制表示中1的个数.其中负数用补码表示. class Solution: def NumberOf1(self, n): # write code here coun ...
- Python 把两个列表遍历为一个
两个list, 有对应关系,希望同时完成遍历 用迭代器迭代的方法也不是不可以,python提供了更直观的方法: 可以使用zip把两个list打包 , 类似: list1 = [1,2,3,4] lis ...
- hibernate延时加载机制
延迟加载: 延迟加载机制是为了避免一些无谓的性能开销而提出来的,所谓延迟加载就是当在真正需要数据的时候,才真正执行数据加载操作.在Hibernate中提供了对实体对象的延迟加载以及对集合的延迟加载,另 ...
- linux备忘录-shell脚本
知识 shell执行方式 shell执行方式有 通过source或. 在现在的bash环境中执行脚本 变量等会保持 通过bash shell.sh或sh shell.sh 使用一个新的bash环境执行 ...
- BZOJ 3925 ZJOI2015 地震后的幻想乡 状压dp+期望
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3925 题意概述: 给出一张N点M边的最小生成树,其中每条边的长度为[0,1]的实数,求最小 ...