A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties:

  • The left subtree of a node contains only nodes with keys less than the node's key.
  • The right subtree of a node contains only nodes with keys greater than or equal to the node's key.
  • Both the left and right subtrees must also be binary search trees.

    A Complete Binary Tree (CBT) is a tree that is completely filled, with the possible exception of the bottom level, which is filled from left to right.

    Now given a sequence of distinct non-negative integer keys, a unique BST can be constructed if it is required that the tree must also be a CBT. You are supposed to output the level order traversal sequence of this BST.

    Input Specification:

    Each input file contains one test case. For each case, the first line contains a positive integer N (≤). Then N distinct non-negative integer keys are given in the next line. All the numbers in a line are separated by a space and are no greater than 2000.

    Output Specification:

    For each test case, print in one line the level order traversal sequence of the corresponding complete binary search tree. All the numbers in a line must be separated by a space, and there must be no extra space at the end of the line.

    Sample Input:

             

    Sample Output:

             

 #include <cstdio>
#include <math.h>
#include <algorithm> using namespace std; int a[];
int T[]; int GetLeftLength(int n)
{
int H=log(n+)/log();
int X=n+-pow(,H);
if(X>pow(,H-))
X=pow(,H-);
int L=pow(,H-)-+X;
return L;
} void solve(int ALeft,int ARight,int TRoot)
{
int n=ARight-ALeft+;
if(n==) return;
int L=GetLeftLength(n);
T[TRoot]=a[ALeft+L];
int LeftTRoot=TRoot*+;
int RightTRoot=LeftTRoot+;
solve(ALeft,ALeft+L-,LeftTRoot);
solve(ALeft+L+,ARight,RightTRoot);
} int main()
{
int n;
scanf("%d",&n);
for(int i=;i<n;i++)
{
scanf("%d",&a[i]);
}
sort(a,a+n);
solve(,n-,);
for(int i=;i<n;i++)
{
if(i==)
printf("%d",T[i]);
else printf(" %d",T[i]);
}
return ;
}

Complete Binary Search Tree的更多相关文章

  1. PAT题库-1064. Complete Binary Search Tree (30)

    1064. Complete Binary Search Tree (30) 时间限制 100 ms 内存限制 32000 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHE ...

  2. 04-树5 Complete Binary Search Tree

    这题也是第二次做,本想第一次做时参考的算法会和老师讲的一样,不想老师讲的算法用在这题感觉还不如思雪园友的算法(http://www.cnblogs.com/sixue/archive/2015/04. ...

  3. 04-树6 Complete Binary Search Tree

    完全二叉树 刚开始只发现了中序遍历是从小到大顺序的.一直在找完全二叉树的层结点间规律...放弃了 不曾想,完全二叉树的规律早就知道啊.根结点为i,其左孩子结点2*i, 右孩子结点2*i+1. 结合此两 ...

  4. A1064. Complete Binary Search Tree

    A Binary Search Tree (BST) is recursively defined as a binary tree which has the following propertie ...

  5. 04-树6 Complete Binary Search Tree(30 分)

    title: 04-树6 Complete Binary Search Tree(30 分) date: 2017-11-12 14:20:46 tags: - 完全二叉树 - 二叉搜索树 categ ...

  6. PAT 1064 Complete Binary Search Tree[二叉树][难]

    1064 Complete Binary Search Tree (30)(30 分) A Binary Search Tree (BST) is recursively defined as a b ...

  7. PAT 甲级 1064 Complete Binary Search Tree

    https://pintia.cn/problem-sets/994805342720868352/problems/994805407749357568 A Binary Search Tree ( ...

  8. 04-树6 Complete Binary Search Tree (30 分)

    A Binary Search Tree (BST) is recursively defined as a binary tree which has the following propertie ...

  9. 04-树6 Complete Binary Search Tree (30 分)

    A Binary Search Tree (BST) is recursively defined as a binary tree which has the following propertie ...

随机推荐

  1. calc()

    什么是calc()? 学习calc()之前,我们有必要先知道calc()是什么?只有知道了他是个什么东东?在实际运用中更好的使用他. calc()从字面我们可以把他理解为一个函数function.其实 ...

  2. Python高阶函数和匿名函数

    高阶函数:就是把函数当成参数传递的一种函数:例如 注解: 1.调用add函数,分别执行abs(-8)和abs(11),分别计算出他们的值 2.最后在做和运算 map()函数 python内置的一个高阶 ...

  3. Notepad++的实用技巧

    一. 安装notepad + +  notepad++的下载.安装非常easy.下一步下一步,所有选项都默认就可以安装好.但有几点需要注意.   截止到写这篇博文,notepad++的最新版本为7.5 ...

  4. css尺寸(大小)属性

    尺寸属性:用来控制元素大小的属性,单位为长度单位. 尺寸属性的使用场景 当使用相对长度单位定义尺寸时,元素的大小跟随窗口大小变化. 为保证元素的正常显示,需要设定元素的最大.最小长度. 手机端开发时需 ...

  5. 局部变量,全局变量初始值问题----C与指针练习题4.14.1

    全局变量初始化0 局部变量初始化是随机值 如下面一段代码,全局变量,将src复制n个字符到dst #include<stdio.h> void copy_n(char dst[],char ...

  6. python 面试题1

    1.大数据的文件读取 ① 利用生成器generator ②迭代器进行迭代遍历:for line in file 2.迭代器和生成器的区别 1)迭代器是一个更抽象的概念,任何对象,如果它的类有next方 ...

  7. webpack使用中遇到的问题

    http://ife.baidu.com/note/detail/id/534 https://blog.csdn.net/hreticent/article/details/80489851

  8. linux三剑客之grep

    linux基础三剑客之grep 1.grep命令 基本介绍 grep命令是文本本过滤工具,是基于一个模式匹配文件的每一行,grep分类:egrep个fgrep. grep英文名:Global  sea ...

  9. 2018.5.4 Unix的五种IO模型

    阻塞非阻塞和异步同步 同步和异步关注的是消息通信机制,关注两个对象之间的调用关系. 阻塞和非阻塞关注的是程序在等待调用结果(消息,返回值)时的状态,关注单一程序. Unix的五种IO模型 以下基于Li ...

  10. centos安装实用总结

    1.常用软件安装: yum install -y bash-completion vim lrzsz wget expect net-tools nc nmap tree dos2unix htop ...