我的代码-random forest
# coding: utf-8
# In[1]:
import pandas as pd
import numpy as np
from sklearn import tree
from sklearn.svm import SVC
from sklearn.grid_search import GridSearchCV
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, confusion_matrix
from sklearn.preprocessing import binarize
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import OneHotEncoder
from sklearn.preprocessing import Normalizer
from sklearn.metrics import f1_score
from sklearn.metrics import accuracy_score,recall_score,average_precision_score,auc
import pandas as pd
import numpy as np
from sklearn import tree
from sklearn.svm import SVC
from sklearn.grid_search import GridSearchCV
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, confusion_matrix
from sklearn.preprocessing import binarize
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import OneHotEncoder
from sklearn.preprocessing import Normalizer
from sklearn.metrics import f1_score
from sklearn.metrics import accuracy_score,recall_score,average_precision_score,auc
# In[137]:
from imblearn.over_sampling import SMOTE
data = pd.read_csv(r"D:\Users\sgg91044\Desktop\model_data_1.csv")
# In[138]:
data.head()
# In[50]:
data= data.drop(columns=['Stg','RNK','parametername','ooc','oos'])
p= pd.pivot_table(data, index=['eqpid','Chamber','lotid','slotid','stage','Recipie_Name','finishtime'],values='data1', columns='Param_Name', aggfunc=np.sum)
# In[54]:
p
p.to_csv(r'D:\Users\sgg91044\Desktop\more_parameter\more_parameter_pivot.csv', index=True, header=True)
# In[236]:
p.drop(columns=["waferid","defect_count"],inplace=True)
# In[237]:
data.head()
# In[184]:
data = pd.read_csv(r"D:\Users\sgg91044\Desktop/MEP_data_pivot.csv")
# In[6]:
data.iloc[:,0:17] = data.iloc[:,0:17].apply(pd.to_numeric,errors='coerce')
# In[239]:
for i in range(0,18):
med = np.median(data.iloc[:,i][data.iloc[:,i].isna() == False])
data.iloc[:,i] = data.iloc[:,i].fillna(med)
# In[139]:
data.Target = data.Target.astype("category")
# In[140]:
Y = data.Target
X = data.drop(columns='Target')
# In[195]:
ohe = OneHotEncoder()
le = LabelEncoder()
# In[246]:
X=X.drop(columns=['eqpid','lotid','Chamber','Recipie_Name'])
X
for i in range(0,18):
med = np.median(data.iloc[:,i][data.iloc[:,i].isna() == False])
data.iloc[:,i] = data.iloc[:,i].fillna(med)
# In[243]:
X["eqp_encoded"] = le.fit_transform(X.iloc[:,0])
X["chmbr_encoded"] = le.fit_transform(X.iloc[:,1])
X.drop(columns=['Step'],inplace=True)
X['recipe_encoded'] = le.fit_transform(X.iloc[:,2])
# In[135]:
X_eqp = ohe.fit_transform(X.eqp_encoded.values.reshape(-1,1)).toarray()
X_chamber = ohe.fit_transform(X.chmbr_encoded.values.reshape(-1,1)).toarray()
X_recipie = ohe.fit_transform(X.recipe_encoded.values.reshape(-1,1)).toarray()
dfOneHot = pd.DataFrame(X_eqp, columns = ["Eqp_"+str(int(i)) for i in range(X_eqp.shape[1])])
X = pd.concat([X, dfOneHot], axis=1)
dfOneHot = pd.DataFrame(X_chamber, columns = ["Chamber_"+str(int(i)) for i in range(X_chamber.shape[1])])
X = pd.concat([X, dfOneHot], axis=1)
dfOneHot = pd.DataFrame(X_recipie, columns = ["Recipie_"+str(int(i)) for i in range(X_recipie.shape[1])])
X = pd.concat([X, dfOneHot], axis=1)
# In[136]:
Trace_back = pd.concat([X[["eqpid","Chamber","Recipie_Name"]],X[["eqp_encoded","chmbr_encoded","recipe_encoded"]]],axis=1)
# In[137]:
X.drop(columns=list(Trace_back.columns),inplace=True)
# In[197]:
nz = Normalizer()
X.iloc[:,0:19]=pd.DataFrame(nz.fit_transform(X.iloc[:,0:19]),columns=X.iloc[:,0:19].columns)
# In[150]:
data.Target = data.Target.astype("category")
Y = data.Target
X = data.drop(columns='Target')
# In[124]:
sm = SMOTE(random_state=12, ratio = 1.0)
X_smote, Y_smote = sm.fit_sample(X, Y)
# In[237]:
data=pd.read_csv(r"D:\Users\sgg91044\Desktop\model_data_1.csv")
# In[238]:
data.eqpid = data.eqpid.astype("category")
data.chamber = data.chamber.astype("category")
data.wafer = data.wafer.astype("category")
# In[239]:
data.Target = data.Target.astype("category")
Y = data.Target
X = data.drop(columns='Target')
# In[240]:
X_train, X_test, y_train, y_test = train_test_split(
X, Y, test_size=0.2, random_state=8)
# In[241]:
sm = SMOTE(random_state=12, ratio = 1.0)
x_train_smote, y_train_smote = sm.fit_sample(X_train, y_train)
# In[242]:
print(y_train.value_counts(), np.bincount(y_train))
# In[243]:
from sklearn.ensemble import RandomForestClassifier
# Make the random forest classifier
random_forest = RandomForestClassifier(n_estimators = 100, random_state = 50, oob_score = True, verbose = 1, n_jobs = -1)
# In[244]:
# Train on the training data
random_forest.fit(x_train_smote,y_train_smote)
# In[245]:
# Make predictions on the test data
y_pred = random_forest.predict(X_test)
# In[246]:
print(classification_report(y_pred=y_pred,y_true=y_test))
# In[247]:
print(confusion_matrix(y_pred=y_pred,y_true=y_test))
# In[235]:
from sklearn.externals import joblib
# Save to file in the current working directory
joblib_file = "model_RF.pkl"
joblib.dump(random_forest, joblib_file)
# In[229]:
X_Nov=pd.read_csv(r'D:\Users\sgg91044\Desktop\sep_oct_data\Nov_good_imputed.csv')
Y_Nov=pd.read_csv(r'D:\Users\sgg91044\Desktop\sep_oct_data\Y_Nov.csv')
# In[230]:
def encode_eqpid(eqpid):
return int(eqpid[-2:])-1
def encode_chamber(chamber):
if chamber == 'A':
return 0
else:
return 1
def encode_wafer(wafer):
if wafer > 0:
return wafer-1
data=pd.read_csv(r"D:\Users\sgg91044\Desktop\normalizing_example.csv")
nz = Normalizer()
data.iloc[:,8:10]=pd.DataFrame(nz.fit_transform(data.iloc[:,8:10]),columns=data.iloc[:,8:10].columns)
data.iloc[:,0:3]=pd.DataFrame(nz.fit_transform(data.iloc[:,0:3]),columns=data.iloc[:,0:3].columns)
# In[231]:
X_Nov.eqpid = X_Nov.eqpid.apply(encode_eqpid)
X_Nov.chamber = X_Nov.chamber.apply(encode_chamber)
X_Nov.wafer = X_Nov.wafer.apply(encode_wafer)
X_Nov.eqpid = X_Nov.eqpid.astype("category")
X_Nov.chamber = X_Nov.chamber.astype("category")
X_Nov.wafer = X_Nov.wafer.astype("category")
X_Nov.iloc[:,11:13]=nz.transform(X_Nov.iloc[:,11:13])
X_Nov.iloc[:,3:6]=nz.transform(X_Nov.iloc[:,3:6])
#SUM_ETCM
X_Nov["SUM_ETCM"]=np.array(X_Nov.ETCM_PHA4)+np.array(X_Nov.ETCM_PHB4)+np.array(X_Nov.ETCM_PHC4)
# In[232]:
X_Nov=X_Nov.drop(columns="Target")
# In[233]:
# Make predictions on the test data
y_pred = random_forest.predict(X_Nov)
# In[234]:
print(classification_report(y_pred=y_pred,y_true=Y_Nov))
# In[129]:
print("Accuracy of Random_forest:",round(accuracy_score(y_pred=y_pred,y_true=y_test) * 100,2),"%")
# In[130]:
print("Sensitivity of Random_forest:",round(recall_score(y_pred=y_pred,y_true=y_test)*100,2),"%")
# In[18]:
from sklearn.externals import joblib
joblib.dump(random_forest, r'D:\Users\sgg91044\Desktop\deployment\model_RF.pkl')
# In[217]:
tuned_parameters = [{'kernel': ['rbf'], 'gamma': [1e-3, 1e-4],
'C': [1, 10, 100, 1000]},
{'kernel': ['linear'], 'C': [1, 10, 100, 1000]},
{'kernel':['poly'],'degree':[2,3,5]}]
clf = GridSearchCV(SVC(),param_grid=tuned_parameters,cv=3,scoring='recall',verbose=True)
clf.fit(x_train_smote,y_train_smote)
# In[218]:
[clf.best_estimator_.kernel,clf.best_estimator_.C,clf.best_estimator_.gamma]
y_pred = clf.predict(X_test)
# In[219]:
print(classification_report(y_pred=y_pred,y_true=y_test))
# In[165]:
df=pd.DataFrame(y_pred)
df.to_csv(r'D:\Users\sgg91044\Desktop\df_pred.csv', index=True, header=True)
# In[223]:
from sklearn.linear_model import LogisticRegression
classifier = LogisticRegression(random_state = 0)
classifier.fit(X_train,y_train)
# In[224]:
y_test_pred=classifier.predict(X_test)
# In[225]:
print(classification_report(y_pred=y_test_pred,y_true=y_test))
# In[120]:
f1_score(y_pred=y_pred,y_true=y_test)
# In[121]:
print("Accuracy of Random_forest:",round(accuracy_score(y_pred=y_pred,y_true=y_test) * 100,2),"%")
# In[122]:
print("Sensitivity of Random_forest:",round(recall_score(y_pred=y_pred,y_true=y_test)*100,2),"%")
# In[30]:
X_train, X_test, y_train, y_test = train_test_split(
X, Y, test_size=0.3, random_state=0)
# In[31]:
sm = SMOTE(random_state=12, ratio = 1.0)
x_train_smote, y_train_smote = sm.fit_sample(X_train, y_train)
# In[32]:
print(y_train.value_counts(), np.bincount(y_train_smote))
# In[86]:
from sklearn.ensemble import RandomForestClassifier
# Make the random forest classifier
random_forest = RandomForestClassifier(n_estimators = 100, random_state = 50, verbose = 1, n_jobs = -1)
# In[89]:
# Train on the training data
random_forest.fit(x_train_smote,y_train_smote)
# In[90]:
# Make predictions on the test data
y_pred = random_forest.predict(X_test)
# In[91]:
print(classification_report(y_pred=y_pred,y_true=y_test))
# In[92]:
print(confusion_matrix(y_pred=y_pred,y_true=y_test))
# In[93]:
f1_score(y_pred=y_pred,y_true=y_test)
# In[220]:
print("Accuracy of Random_forest:",round(accuracy_score(y_pred=y_pred,y_true=y_test) * 100,2),"%")
# In[221]:
print("Sensitivity of Random_forest:",round(recall_score(y_pred=y_pred,y_true=y_test)*100,2),"%")
# In[96]:
y_pred_rf = random_forest.predict_proba(X_test)
y_pred_rf
# In[99]:
# The random forest model by itself
y_pred_rf = random_forest.predict_proba(X_test)[:, 1]
fpr_rf, tpr_rf, _ = roc_curve(y_test, y_pred_rf)
# In[83]:
import matplotlib.pyplot as plt
plt.figure(1)
plt.plot([0, 1], [0, 1], 'k--')
plt.plot(fpr_rf, tpr_rf, label='RF')
plt.xlabel('False positive rate')
plt.ylabel('True positive rate')
plt.title('ROC curve')
plt.legend(loc='best')
plt.show()
# Compute micro-average ROC curve and ROC area
fpr["micro"], tpr["micro"], _ = roc_curve(y_test.ravel(), y_pred_rf.ravel())
roc_auc["micro"] = auc(fpr["micro"], tpr["micro"])
print ("AUC of Random_forest:", roc_auc["micro"])
我的代码-random forest的更多相关文章
- 多分类问题中,实现不同分类区域颜色填充的MATLAB代码(demo:Random Forest)
之前建立了一个SVM-based Ordinal regression模型,一种特殊的多分类模型,就想通过可视化的方式展示模型分类的效果,对各个分类区域用不同颜色表示.可是,也看了很多代码,但基本都是 ...
- [Machine Learning & Algorithm] 随机森林(Random Forest)
1 什么是随机森林? 作为新兴起的.高度灵活的一种机器学习算法,随机森林(Random Forest,简称RF)拥有广泛的应用前景,从市场营销到医疗保健保险,既可以用来做市场营销模拟的建模,统计客户来 ...
- paper 56 :机器学习中的算法:决策树模型组合之随机森林(Random Forest)
周五的组会如约而至,讨论了一个比较感兴趣的话题,就是使用SVM和随机森林来训练图像,这样的目的就是 在图像特征之间建立内在的联系,这个model的训练,着实需要好好的研究一下,下面是我们需要准备的入门 ...
- sklearn_随机森林random forest原理_乳腺癌分类器建模(推荐AAA)
sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003& ...
- 随机森林(Random Forest)
阅读目录 1 什么是随机森林? 2 随机森林的特点 3 随机森林的相关基础知识 4 随机森林的生成 5 袋外错误率(oob error) 6 随机森林工作原理解释的一个简单例子 7 随机森林的Pyth ...
- 随机森林(Random Forest),决策树,bagging, boosting(Adaptive Boosting,GBDT)
http://www.cnblogs.com/maybe2030/p/4585705.html 阅读目录 1 什么是随机森林? 2 随机森林的特点 3 随机森林的相关基础知识 4 随机森林的生成 5 ...
- [ML学习笔记] 决策树与随机森林(Decision Tree&Random Forest)
[ML学习笔记] 决策树与随机森林(Decision Tree&Random Forest) 决策树 决策树算法以树状结构表示数据分类的结果.每个决策点实现一个具有离散输出的测试函数,记为分支 ...
- [Machine Learning & Algorithm] 随机森林(Random Forest)-转载
作者:Poll的笔记 博客出处:http://www.cnblogs.com/maybe2030/ 阅读目录 1 什么是随机森林? 2 随机森林的特点 3 随机森林的相关基础知识 4 随机森林的生成 ...
- ML(4.3): R Random Forest
随机森林模型是一种数据挖掘模型,常用于进行分类预测.随机森林模型包含多个树形分类器,预测结果由多个分类器投票得出. 决策树相当于一个大师,通过自己在数据集中学到的知识对于新的数据进行分类.俗话说得好, ...
随机推荐
- Java基本概述
1.java语言的特点 1.面向对象:基本概念(类,对象) 三大特征:封装.继承.多态 2.健壮性 3.跨平台:通过Java语言的编写的应用程序在不同的系统平台上都能可以进行运行. 2.什么是JDK. ...
- Linux快捷键总结
使用Linux很久了,现对经常用到的快捷键做一个总结: 最重要的一个当然是tab了 [root@localhost ~]# cd /etc/sys sysconfig/ sysctl.conf sys ...
- 理解什么是适配器(adapter)和接口(interface)
● 适配器(adapter) In computing, adapter is a hardware device or software component that converts transm ...
- java this关键字的使用
this关键字 this关键字只能在方法内部使用,表示对"调用方法的那个对象"的引用. this的三个用法: 1.调用本类中的其他方法 如果在方法 ...
- js隐藏字符串中间部分
在进行web前端页面开发中,有时需要从后台获取用户数据来显示在前台页面,但是考虑到用户信息安全的问题,就需要对这些信息进行处理,使其不完全显示出来,例如姓名,两个字的显示姓,名字用*代替,电话前三位和 ...
- IPhone微信H5用Video标签播放不了视频
H5用Video标签播放视频 视频在安卓上可以正常播放,在苹果上却不能播放. 因为用了文件服务站点,而且不支持断点下载 把文件服务改成支持断点下载即可 断点下载参考(C#)
- javascript 禁用 右键 按键 禁用开发者工具
var h = window.innerHeight,w=window.innerWidth; //禁用右键 (防止右键查看源代码) window.oncontextmenu=function(){ ...
- float样式的使用
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- 2019-04-23-day038-数据库的语句
昨日回顾 补充的知识点 server端肯定是确定下来的 mysql的客户端 mysql.exe 直接在命令行就可以运行的 (学习阶段用) navicat等可视化的客户端,是第三方开发的客户端 (开发辅 ...
- Sublime Text 3(3207)安装
Sublime Text 3207 下载 官网地址: Sublime Text 下载需要的类型 安装插件 安装插件管理器: 打开Sublime,点击Tools => Install Packag ...