Note of Jieba

jieba库是python 一个重要的第三方中文分词函数库,但需要用户自行安装。

一、jieba 库简介

(1) jieba 库的分词原理是利用一个中文词库,将待分词的内容与分词词库进行比对,通过图结构和动态规划方法找到最大概率的词组;除此之外,jieba 库还提供了增加自定义中文单词的功能。

(2) jieba 库支持3种分词模式:

精确模式:将句子最精确地切开,适合文本分析。

全模式:将句子中所以可以成词的词语都扫描出来,速度非常快,但是不能消除歧义。

搜索引擎模式:在精确模式的基础上,对长分词再次切分,提高召回率,适合搜索引擎分词。

二、安装库函数

(1) 在命令行下输入指令:

pip install jieba

(2) 安装进程:

三、调用库函数

(1) 导入库函数:import  <库名>

使用库中函数:<库名> . <函数名> (<函数参数>)

(2) 导入库函数:from  <库名>  import * ( *为通配符 )

使用库中函数:<函数名> (<函数参数>)

四、jieba 库函数

(1) 库函数功能

模式

函数

说明

精确模式

cut(s)

返回一个可迭代数据类型

lcut(s)

返回一个列表类型 (建议使用)

全模式

cut(s,cut_all=True)

输出s中所以可能的分词

lcut(s,cut_all=True)

返回一个列表类型 (建议使用)

搜索引擎模式

cut_for_search(s)

适合搜索引擎建立索引的分词结果

lcut_for_search(s)

返回一个列表类型 (建议使用)

自定义新词

add_word(w)

向分词词典中增加新词w

(2) 函数使用实例

五、对一篇文档进行词频统计

(1) jieba 库单枪匹马

A. 代码实现

注:代码使用的文档 >>> Detective_Novel(utf-8).zip[点击下载],也可自行找 utf-8 编码格式的txt文件。

 # -*- coding:utf-8 -*-
from jieba import * def Replace(text,old,new): #替换列表的字符串
for char in old:
text = text.replace(char,new)
return text def getText(filename): #读取文件内容(utf-8 编码格式)
#特殊符号和部分无意义的词
sign = '''!~·@¥……*“”‘’\n(){}【】;:"'「,」。-、?'''
txt = open('{}.txt'.format(filename),encoding='utf-8').read()
return Replace(txt,sign," ") def word_count(passage,N): #计算passage文件中的词频数,并将前N个输出
words = lcut(passage) #精确模式分词形式
counts = {} #创建计数器 --- 字典类型
for word in words: #消除同意义的词和遍历计数
if word == '小五' or word == '小五郎' or word == '五郎':
rword = '毛利'
elif word == '柯' or word == '南':
rword = '柯南'
elif word == '小' or word == '兰':
rword = '小兰'
elif word == '目' or word == '暮' or word == '警官':
rword = '暮目'
else:
rword = word
counts[rword] = counts.get(rword,0) + 1
excludes = lcut_for_search("你我事他和她在这也有什么的是就吧啊吗哦呢都了一个")
for word in excludes: #除去意义不大的词语
del(counts[word])
items = list(counts.items()) #转换成列表形式
items.sort(key = lambda x : x[1], reverse = True ) #按次数排序
for i in range(N): #依次输出
word,count = items[i]
print("{:<7}{:>6}".format(word,count)) if __name__ == '__main__':
passage = getText('Detective_Novel') #输入文件名称读入文件内容
word_count(passage,20) #调用函数得到词频数

B. 执行结果

(2) jieba 库 和 wordcloud 库 强强联合 --- 词云图

A. 代码实现

 # -*- coding:utf-8 -*-
from wordcloud import WordCloud
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image
from jieba import * def Replace(text,old,new): #替换列表的字符串
for char in old:
text = text.replace(char,new)
return text def getText(filename): #读取文件内容(utf-8 编码格式)
#特殊符号和部分无意义的词
sign = '''!~·@¥……*“”‘’\n(){}【】;:"'「,」。-、?'''
txt = open('{}.txt'.format(filename),encoding='utf-8').read()
return Replace(txt,sign," ") def creat_word_cloud(filename): #将filename 文件的词语按出现次数输出为词云图
text = getText(filename) #读取文件
wordlist = lcut(text) #jieba库精确模式分词
wl = ' '.join(wordlist) #生成新的字符串 #设置词云图
font = r'C:\Windows\Fonts\simfang.ttf' #设置字体路径
wc = WordCloud(
background_color = 'black', #背景颜色
max_words = 2000, #设置最大显示的词云数
font_path = font, #设置字体形式(在本机系统中)
height = 1200, #图片高度
width = 1600, #图片宽度
max_font_size = 100, #字体最大值
random_state = 100, #配色方案的种类
)
myword = wc.generate(wl) #生成词云
#展示词云图
plt.imshow(myword)
plt.axis('off')
plt.show()
#以原本的filename命名保存词云图
wc.to_file('{}.png'.format(filename)) if __name__ == '__main__':
creat_word_cloud('Detective_Novel') #输入文件名生成词云图

B. 执行结果

Note of Jieba ( 词云图实例 )的更多相关文章

  1. 超详细:Python(wordcloud+jieba)生成中文词云图

    # coding: utf-8 import jieba from scipy.misc import imread # 这是一个处理图像的函数 from wordcloud import WordC ...

  2. Note of Jieba

    Note of Jieba jieba库是python 一个重要的第三方中文分词函数库,但需要用户自行安装. 一.jieba 库简介 (1) jieba 库的分词原理是利用一个中文词库,将待分词的内容 ...

  3. python 可视化 词云图

    文本挖掘及可视化知识链接 我的代码: # -*- coding: utf-8 -*- from pandas import read_csv import numpy as np from sklea ...

  4. 特朗普退出《巴黎协定》:python词云图舆情分析

    1 前言 2017年6月1日,美国特朗普总统正式宣布美国退出<巴黎协定>.宣布退出<巴黎协定>后,特朗普似乎成了“全球公敌”. 特斯拉总裁马斯克宣布退出总统顾问团队 迪士尼董事 ...

  5. 使用 wordcloud 构建词云图

    from wordcloud import WordCloudfrom matplotlib import pyplot as pltfrom PIL import Imageimport numpy ...

  6. python绘制中文词云图

    准备工作 主要用到Python的两个第三方库 jieba:中文分词工具 wordcloud:python下的词云生成工具 步骤 准备语料库,词云图需要的背景图片 使用jieba进行分词,去停用词,词频 ...

  7. python爬虫+词云图,爬取网易云音乐评论

    又到了清明时节,用python爬取了网易云音乐<清明雨上>的评论,统计词频和绘制词云图,记录过程中遇到一些问题 爬取网易云音乐的评论 一开始是按照常规思路,分析网页ajax的传参情况.看到 ...

  8. [超详细] Python3爬取豆瓣影评、去停用词、词云图、评论关键词绘图处理

    爬取豆瓣电影<大侦探皮卡丘>的影评,并做词云图和关键词绘图第一步:找到评论的网页url.https://movie.douban.com/subject/26835471/comments ...

  9. 已知词频生成词云图(数据库到生成词云)--generate_from_frequencies(WordCloud)

    词云图是根据词出现的频率生成词云,词的字体大小表现了其频率大小. 写在前面: 用wc.generate(text)直接生成词频的方法使用很多,所以不再赘述. 但是对于根据generate_from_f ...

随机推荐

  1. hive笔记

    cast cast(number as string),  可以将整数转成字符串 lpad  rpad lpad(target, 10, '0')   表示在target字符串前面补0,构成一个长度为 ...

  2. saltstack主机管理项目:今日总结(六)

    一.总目录 二.具体代码 salt #!/usr/bin/env python # -*- coding:utf-8 -*- # Author:luoahong import os,sys if __ ...

  3. golang net包使用

    创建简单的响应服务器 package main import ( "net/http" ) func handlerFunc(w http.ResponseWriter, r *h ...

  4. MongoDB 3.6.9 集群搭建 - 切片+副本集

    1. 环境准备 在Mongo的官网下载Linux版本安装包,然后解压到对应的目录下:由于资源有限,我们采用Replica Sets + Sharding方式来配置高可用.结构图如下所示: 这里我说明下 ...

  5. ASP.NET Web API 2 之路由配置

    Ø  简介 ASP.NET Web API 路由配置也是必须掌握的技术点之一,要真正的完全掌握和理解它也是需要一定的过程的.不过,在平常的开发过程中,对它有基本的了解就足够了.因为我们主要关注点并不在 ...

  6. C语言网蓝桥杯1116 IP判断

    判断IP地址的合法性, 1.不能出现除数字和点字符以外的的其他字符 2.数字必须在0-255之间,要注意边界. 题目分析: 因为一个IP是又四个数字组成,且可能存在符号和其他字符,故不能用整型数组处理 ...

  7. jquery .map() 和 .each()函数结合使用

    需求:页面动态添加的html元素(如div),保存时组装div中的数据为一个json对象. 思路:遍历每个div,再遍历div中每个输入元素,把所有先把数据放到一个对象中,再添加进数组,Json.st ...

  8. 题解 P5065 【[Ynoi2014]不归之人与望眼欲穿的人们】

    出现了一篇跑得炒鸡慢的题解! noteskey 无 fuck 说,好像就是整个数列分块然后合并区间...什么的吧 对于每块内部就是算一下前缀信息.后缀信息(就是以 第一个点/最后一个点 为一个边界,不 ...

  9. having的用法

    转载:http://blog.csdn.net/oathevil/article/details/5521757 where和having: “Where” 是一个约束声明,使用Where来约束来自于 ...

  10. MinGW GCC 8.1.0 2018年5月2日 出炉啦

    MSYS_MinGW-w64_GCC_810_x86-x64.7z for x86 x64 59.0 MB发布日期: 2018-05-04 下载地址:https://sourceforge.net/p ...