1.题目描述

Vasya has got a robot which is situated on an infinite Cartesian plane, initially in the cell (0,0)(0,0). Robot can perform the following four kinds of operations:

  • U — move from (x,y) to (x,y+1)
  • D — move from (x,y)to (x,y−1)
  • L — move from (x,y)to (x−1,y)
  • R — move from (x,y) to (x+1,y)

Vasya also has got a sequence of nn operations. Vasya wants to modify this sequence so after performing it the robot will end up in (x,y)(x,y).

Vasya wants to change the sequence so the length of changed subsegment is minimum possible. This length can be calculated as follows: maxID−minID+1maxID−minID+1, where maxIDmaxID is the maximum index of a changed operation, and minIDminID is the minimum index of a changed operation. For example, if Vasya changes RRRRRRR to RLRRLRL, then the operations with indices 22, 55 and 77 are changed, so the length of changed subsegment is 7−2+1=67−2+1=6. Another example: if Vasya changes DDDD to DDRD, then the length of changed subsegment is 11.

If there are no changes, then the length of changed subsegment is 00. Changing an operation means replacing it with some operation (possibly the same); Vasya can't insert new operations into the sequence or remove them.

Help Vasya! Tell him the minimum length of subsegment that he needs to change so that the robot will go from (0,0)(0,0) to (x,y)(x,y), or tell him that it's impossible.

Input

The first line contains one integer number n (1≤n≤2⋅105)n (1≤n≤2⋅105) — the number of operations.

The second line contains the sequence of operations — a string of nn characters. Each character is either U, D, L or R.

The third line contains two integers x,y (−109≤x,y≤109)x,y (−109≤x,y≤109) — the coordinates of the cell where the robot should end its path.

Output

Print one integer — the minimum possible length of subsegment that can be changed so the resulting sequence of operations moves the robot from (0,0)(0,0) to (x,y)(x,y). If this change is impossible, print −1−1.

Examples
input

Copy
5
RURUU
-2 3
output

Copy
3
input

Copy
4
RULR
1 1
output

Copy
0
input

Copy
3
UUU
100 100
output

Copy
-1
Note

In the first example the sequence can be changed to LULUU. So the length of the changed subsegment is 3−1+1=33−1+1=3.

In the second example the given sequence already leads the robot to (x,y)(x,y), so the length of the changed subsegment is 00.

In the third example the robot can't end his path in the cell (x,y)(x,y).

2.思路:

机器人行走的每一步先后顺序其实是没有意义的,这也是这道题的关键。

先按照题目中给的路径计算x,y移动的位置,再二分判断修改的地方在哪里。

代码:

 #include<iostream>
#include<stdio.h>
#include<vector>
#include<map>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<set>
#include<cmath>
using namespace std;
const int SIZE = ;
char s[SIZE];
int ex,ey;
int xSum[SIZE];
int ySum[SIZE];
int dx[],dy[];
dy['U'] = ;
dy['D'] = -;
dx['L'] = -;
dx['R'] = ;
//判断下一步在哪个区间段内行走
bool judge(int n, int len, int ex,int ey){
for(int i = ; i + len- <= n; ++i){
int curx = xSum[i-] + xSum[n]-xSum[i+len-];
// 去除长度 len长度 后的 x 走到的位置
int cury = ySum[i-] + ySum[n]-ySum[i+len-];
// 去除长度 len 长度后的 y走到的位置
int delta = abs(curx-ex) + abs(cury-ey);
// 距离到达终点还需要多少步
if(delta <= len && (len-delta)% == ) // 到达终点还需要的步数 一定小于 目前可以通过改变方向的那些步数的个数 len
return true; // 并且 因为此时 len两端 必须是改变的(0 或者 1 是特殊情况) len与delta差值 必须为偶数才能到终点
}
return false;
} int main()
{
int n;
scanf("%d\n%s",&n,s+);
scanf("%d%d",&ex,&ey);
//先算出题目给定路径的最后位置
for(int i = ; i <= n; ++i){
xSum[i] = xSum[i-] + dx[s[i]];
ySum[i] = ySum[i-] + dy[s[i]];
}
int lb = ,ub = n;
int ans = -,mid;
while(lb <= ub){
mid = (lb+ub)/;
if(judge(n,mid,ex,ey)){
ans = mid;
ub = mid-;
}
else{
lb = mid+;
}
}
printf("%d\n",ans);
return ;
}

C. Vasya and Robot二分的更多相关文章

  1. Educational Codeforces Round 53 (Rated for Div. 2) C Vasya and Robot 二分

    题目:题目链接 思路:对于x方向距离与y方向距离之和大于n的情况是肯定不能到达的,另外,如果n比abs(x) + abs(y)大,那么我们总可以用UD或者LR来抵消多余的大小,所以只要abs(x) + ...

  2. CF 1073C Vasya and Robot(二分答案)

    C. Vasya and Robot time limit per test 1 second memory limit per test 256 megabytes input standard i ...

  3. Educational Codeforces Round 53 (Rated for Div. 2) C. Vasya and Robot 【二分 + 尺取】

    任意门:http://codeforces.com/contest/1073/problem/C C. Vasya and Robot time limit per test 1 second mem ...

  4. Codeforces 1073C:Vasya and Robot(二分)

    C. Vasya and Robot time limit per test: 1 secondmemory limit per test: 256 megabytesinput: standard ...

  5. Codeforces 1073C Vasya and Robot 【二分】

    <题目链接> 题目大意: 一个机器人从(0,0)出发,输入一段指令字符串,和机器人需要在指定步数后到达的终点,问如果机器人需要在指定步数内到达终点,那么需要对原指令字符串做出怎样的改变,假 ...

  6. Educational Codeforces Round 53 (Rated for Div. 2) C. Vasya and Robot(二分或者尺取)

    题目哦 题意:给出一个序列,序列有四个字母组成,U:y+1,D:y-1 , L:x-1 , R:x+1;   这是规则 . 给出(x,y) 问可不可以经过最小的变化这个序列可以由(0,0) 变到(x, ...

  7. 【CF1073C】Vasya and Robot(二分,构造)

    题意:给定长为n的机器人行走路线,每个字符代表上下左右走,可以更改将一些字符改成另外三个字符,定义花费为更改的下标max-min+1, 问从(0,0)走到(X,Y)的最小花费,无解输出-1 n< ...

  8. Codeforces Round #281 (Div. 2) C. Vasya and Basketball 二分

    C. Vasya and Basketball time limit per test 2 seconds memory limit per test 256 megabytes input stan ...

  9. codeforces 676C C. Vasya and String(二分)

    题目链接: C. Vasya and String time limit per test 1 second memory limit per test 256 megabytes input sta ...

随机推荐

  1. gitlab升级和迁移

    由于近期公司gitlab服务器老是卡顿和出现其他问题,然后也很久没有升级过了,现在版本还是8.10.5,而官网最新版本已经是11.2了.另一个原因是gitlab所在的这台服务器快到期了,想换一台配置更 ...

  2. Windows系统盘符错乱导致桌面无法加载。

    问题如下 : 同事有台笔记本更换SSD硬盘,IT职员帮他将新硬盘分好区后再将系统完整Ghost过来,然后装到笔记本上.理论上直接就可以使用了!但结果开机后登陆用户桌面无法显示,屏幕黑屏什么都没有. 问 ...

  3. css实现移动端水平滚动导航

    <!DOCTYPE html> <html> <head lang="en"> <meta charset="UTF-8&quo ...

  4. js中子页面父页面方法 变量相互调用(转)

    原文:https://www.cnblogs.com/huangshuqiang/p/5734358.html (1)子页面调用父页面的方法或者变量: window.parent.方法()或者变量名w ...

  5. Oracle 数据文件迁移

    背景 这两天做一个oracle数据库迁移,以前都是用exp.imp来走,这次用到了expdp.impdp,的确有些优势,但同时又想起了只是拷贝数据文件迁移的方式,其实这个方式不常用做迁移,更多用在磁盘 ...

  6. 用WKWebView 截取整个Html页面

    以前使用UIWebview时,想截取整个页面,可以调整内部scrollView的frame,之后调用 scrollView的layer的 render 方法,很方便. 但是在WKWebView上,行不 ...

  7. Java_变量类型

    目录 主要是为了复习java相关知识,本文主要内容来自于 http://www.runoob.com/java 一.局部变量 局部变量声明在方法.构造方法或语句块中 在方法.构造方法.语句块被执行的时 ...

  8. 办公用品管理系统VB——库存数量导出EXCEL,SaveEXCEL

    办公用品管理系统VB——库存数量导出EXCEL,SaveEXCEL 总体来说,VB的EXCEL导出效率还是蛮低的,就是一个小型化的办公用品管理软件,不再优化了. 时间紧迫,就没有从头到尾的用C#编写, ...

  9. [原创]FPGA JTAG工具设计(二)

    经过前期打样 基于FT2232H的JTAG &UART板级已经初步形成 在Viado环境和ISE(13.2+)环境可以使用 速度支持10MHz/15MHz/30MHz 在ISE iMpact下 ...

  10. 【Android】webview javascript 注入方法

    Android中向webview注入js代码可以通过webview.loadUrl("javascript:xxx")来实现,然后就会执行javascript后面的代码. 但是当需 ...