如何快速求解第一类斯特林数--nlog^2n + nlogn
参考资料
百度百科
斯特林数 学习笔记-by zhouzhendong
前言
首先是因为这道题,才去研究了这个玩意:【2019雅礼集训】【第一类斯特林数】【NTT&多项式】permutation
感觉这个东西非常的...巧妙。
暴力
第一类斯特林树S(n,k)就是将n个数字划分为k个不相区分的圆排列的方案数(即忽略顺序)。
首先,第一类斯特林数有一个人尽皆知的\(O(n^2)\)递推式:
\]
理解起来也是比较容易的。就是考虑新来的一个元素,可以自成一个圆排列,也可以放在前面已经有的圆排列的空位置,而一共有n-1个空位。所以说上式成立。
nlog^2n的做法
这个还是比较好理解的。
类比于二项式定理的形式,其实也有一个关于第一类斯特林数的多项式的形式:
\]
\]
其中上面(1)式的左半部分称作上升幂,(2)式的左半部分称作下降幂。
其实不知道推理也没关系,因为这和二项式定理一样,本身就是一个结论,规定
推导过程:
数学归纳法:
先令\(f(x,n)=x(x-1)(x-2)...(x-n+1)\)
\]
\]
左边:令i=i-1;
右边:因为S(n,0)和S(n,n+1)都等于0,所以可以将S(n,0)替换为S(n,n+1):
\]
再合并:
\]
\]
对于上升幂来说,也是如此。
为了免去(-1)这个系数的影响,下面统一使用上升幂进行讨论。
观察上述式子,我们发现,好像可以直接暴力分治FFT:假设当前是计算\((x+L)(x+L+1)...(x+R)\),然后我们考虑将L ~ mid和mid+1 ~ R分别计算后,再将两边的式子乘起来,继续往上递回溯就行了。复杂度是\(O(n\log ^2n)\)的。
nlogn的做法
然而我们还可以进一步进行优化。大致的思路是在之前的基础上,将左半部分,也就是L ~ mid的部分算出来之后,直接使用卷积计算出右半部分(mid+1 ~ R)回溯回来之后的多项式,然后将两个式子相乘之后直接回溯。如果能够实现的话,时间复杂度就降到了\(O(nlogn)\)(虽然常数很大)。
假设当前的最高项的次数为2n(先不管奇数的情况)。
现在我们具体来考虑如何通过将L ~ mid进行递归计算后返回的多项式(即\(\sum_{i=0}^{n-1}(x+i)\))的系数直接推出递归mid+1 ~ R得到的多项式(\(\sum_{i=n}^{2*n-1}(x+i)\))的系数:
左边的多项式是\(a_0+a_1x+a_2x^2+...+a_nx^n\),即\(\sum_{i=0}^{n}a_ix^i\)。
那么就可以直接得到右边一半的式子是:\(\sum_{i=0}^{n}a_i(x+n)^i\)
然后就可以得到:
\sum_{i=1}^{n}a_i(x+n)^i &=\sum_{i=1}^{n}a_i\sum_{j=0}^{i}C_{i}^{j}x^jn^{i-j} \tag{1}\\
&=\sum_{j=0}^{n}x^{j}\sum_{i=j}^{n}C_{i}^{j}n^{i-j}a_{i} \tag{2}\\
&=\sum_{i=0}^{n}x^{i}\sum_{j=i}^{n}C_{j}^{i}n^{j-i}a_{j} \tag{3}\\
&=\sum_{i=0}^{n}x^{i}\sum_{j=i}^{n}\frac{1}{i!}*(\frac{n^{j-i}}{(j-i)!})*(j!a_j) \tag{4}
\end{align}
\]
其中(1)到(2)就是简单的二项式定理暴力展开。(2)到(3)则是交换了i和j... (3)到(4)是把\(x^i\)单独提出来了。(3)到(4)则是将inv[j!]单独提出来,并将j-i和j两个参量分开,形成了一个标准的减法卷积的形式。可以在最后的时候每一项单独乘上inv[j!]就可以了。
减法卷积怎么搞呢?
当然是选择将其中的一个多项式进行反转,最后再反转/平移回来啦(巨恶心)!然后我的做法是令\(p_i=\frac{n^{i}}{i!}\),\(q_i=i!a_{i}\),然后构造多项式\(f_1(x)=\sum_{i=0}^{n}p_ix^i\)和多项式\(f_2(x)=\sum_{i=0}^{n}q_ix^i\),然后我们将第一个多项式进行翻转,然后将两个多项式卷积起来,并设最终式(其中p,q,k的定义都是翻转前的定义)为:\(\sum_{i=0}^{n}k_ix^i\)就有:
k_{i-j}&=\sum_{i,j} p_{j}q_i\\
k_{i+j}&=\sum_{i,j} p_{-j}q_i\\
k_{i+j-n}&=\sum_{i,j} p_{n-j}q_i\\
k'_{i+j}&=\sum_{i,j} p'_{j}q_i\\
\end{align}
\]
这样子我们就强行将这个式子转化为了一个加法卷积式。注意最后只需要将求出来左移n格就是答案了。但是感觉将翻转后的多项式进行卷积后,答案竟然需要平移回来,有点怪???
据说,将\(f_2(x)\)进行翻转的话,最后就是将卷积得到的数组再翻转回来了,有兴趣的读者可以自行尝试。
对了刚刚还没提次数为奇数的情况怎么处理。假设最高项为2n+1,那么你可以先将其看做是2n次的多项式,按照套路计算完后,再将最后一项(x+2n)暴力O(n)乘上去就可以了。
写起来总体思路并不是那么恶心,只是细节较多(写着写着就卡住了)
代码
int PowMod(int x,int y)
{
int ret=1;
while(y)
{
if(y&1)
ret=1LL*ret*x%MO;
x=1LL*x*x%MO;
y>>=1;
}
return ret;
}
void Prepare()
{
fact[0]=1;
for(int i=1;i<=MAXN;i++)
fact[i]=1LL*fact[i-1]*i%MO;
inv[MAXN]=PowMod(fact[MAXN],MO-2);//求阶乘的逆元
for(int i=MAXN-1;i>=0;i--)
inv[i]=1LL*inv[i+1]*(1LL*i+1LL)%MO;
}
void Reverse(int A[],int deg)
{
for(int i=0;i<deg/2;i++)
swap(A[i],A[deg-i-1]);
}
void NTT(int P[],int len,int oper)
{
for(int i=1,j=0;i<len-1;i++)
{
for(int s=len;j^=s>>=1,~j&s;);
if(i<j) swap(P[i],P[j]);
}
int unit,unit_p0;
for(int d=0;(1<<d)<len;d++)
{
int m=(1<<d),m2=m*2;
unit_p0=PowMod(G,(MO-1)/m2);
if(oper==-1)
unit_p0=PowMod(unit_p0,MO-2);
for(int i=0;i<len;i+=m2)
{
unit=1;
for(int j=0;j<m;j++)
{
int &P1=P[i+j+m],&P2=P[i+j];
int t=1LL*unit*P1%MO;
P1=((1LL*P2-1LL*t)%MO+MO)%MO;
P2=(1LL*P2+1LL*t)%MO;
unit=1LL*unit*unit_p0%MO;
}
}
}
if(oper==-1)
{
int inv=PowMod(len,MO-2);
for(int i=0;i<len;i++)
P[i]=1LL*P[i]*inv%MO;
}
}
void Mul(int ret[],int _x[],int l1,int _y[],int l2)//多项式乘法
{
static int RET[MAXN+5],X[MAXN+5],Y[MAXN+5];
int len=1;
while(len<l1+l2) len<<=1;
copy(_x,_x+l1,X);copy(_y,_y+l2,Y);
fill(X+l1,X+len,0);fill(Y+l2,Y+len,0);
NTT(X,len,1);NTT(Y,len,1);
for(int i=0;i<len;i++)
RET[i]=1LL*X[i]*Y[i]%MO;
NTT(RET,len,-1);
copy(RET,RET+l1+l2,ret);
}
void Get(int deg,int A[],int B[])
{
static int tmpA[MAXN+5],tmpB[MAXN+5];
int len=deg/2;
for(int i=0;i<len+1;i++)
tmpA[i]=1LL*PowMod(len,i)*inv[i]%MO;//先预处理f1(x)
fill(tmpA+len+1,tmpA+deg+1,0);
for(int i=0;i<len+1;i++)
tmpB[i]=1LL*fact[i]*A[i]%MO;//再预处理f2(x)
fill(tmpB+len+1,tmpB+deg+1,0);
Reverse(tmpA,len+1);//将f1进行翻转
Mul(tmpA,tmpA,len+1,tmpB,len+1);//相乘
for(int i=0;i<=len;i++)
tmpA[i]=1LL*tmpA[i+len]*inv[i]%MO;//最后将结果移位回来,同时乘上inv[j!]
copy(tmpA,tmpA+len+1,B);
}
void Solve(int deg,int B[])//快速求解第一类斯特林数
{//deg为最高次数项的次数(和以前的代码风格不一样,不舒服)
static int tmpB[MAXN+5];
if(deg==1)
{
B[1]=1;//终止状态为x
return;
}
Solve(deg/2,B);//先递归求左半部分
int hf=deg/2;
copy(B,B+hf+1,tmpB);//注意+1
fill(tmpB+hf+1,tmpB+deg+1,0);
Get(deg-deg%2,tmpB,tmpB+hf+1);//通过左边的返回多项式直接求右边的返回多项式
Mul(B,tmpB,hf+1,tmpB+hf+1,hf+1);//将左右两边相乘
if(deg%2==1)//奇数的情况特殊处理
for(int i=deg;i>=1;i--)
B[i]=(1LL*B[i]*(1LL*deg-1LL)%MO+1LL*B[i-1])%MO;//可以列个式子看一下
}
如何快速求解第一类斯特林数--nlog^2n + nlogn的更多相关文章
- 【2019雅礼集训】【CF 960G】【第一类斯特林数】【NTT&多项式】permutation
目录 题意 输入格式 输出格式 思路 代码 题意 找有多少个长度为n的排列,使得从左往右数,有a个元素比之前的所有数字都大,从右往左数,有b个元素比之后的所有数字都大. n<=2*10^5,a, ...
- CF960G(第一类斯特林数)
题目 CF960G 做法 设\(f(i,j)\)为\(i\)个数的序列,有\(j\)个前缀最大值的方案数 我们考虑每次添一个最小数,则有:\(f(i,j)=f(i-1,j)+(i-1)*f(i-1,j ...
- 【cf960G】G. Bandit Blues(第一类斯特林数)
传送门 题意: 现在有一个人分别从\(1,n\)两点出发,包中有一个物品价值一开始为\(0\),每遇到一个价值比包中物品高的就交换两个物品. 现在已知这个人从左边出发交换了\(a\)次,从右边出发交换 ...
- CF960G Bandit Blues 第一类斯特林数、NTT、分治/倍增
传送门 弱化版:FJOI2016 建筑师 由上面一题得到我们需要求的是\(\begin{bmatrix} N - 1 \\ A + B - 2 \end{bmatrix} \times \binom ...
- CF960G Bandit Blues 【第一类斯特林数 + 分治NTT】
题目链接 CF960G 题解 同FJOI2016只不过数据范围变大了 考虑如何预处理第一类斯特林数 性质 \[x^{\overline{n}} = \sum\limits_{i = 0}^{n}\be ...
- CF960G Bandit Blues 分治+NTT(第一类斯特林数)
$ \color{#0066ff}{ 题目描述 }$ 给你三个正整数 \(n\),\(a\),\(b\),定义 \(A\) 为一个排列中是前缀最大值的数的个数,定义 \(B\) 为一个排列中是后缀最大 ...
- 【UVA 11077】 Find the Permutations (置换+第一类斯特林数)
Find the Permutations Sorting is one of the most used operations in real life, where Computer Scienc ...
- [CF960G]Bandit Blues(第一类斯特林数+分治卷积)
Solution: 先考虑前缀,设 \(f(i, j)\) 为长度为 \(i\) 的排列中满足前缀最大值为自己的数有 \(j\) 个的排列数. 假设新加一个数 \(i+1\) 那么会有: \[ f ...
- 【HDU 4372】 Count the Buildings (第一类斯特林数)
Count the Buildings Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Othe ...
随机推荐
- AFM论文精读
深度学习在推荐系统的应用(二)中AFM的简单回顾 AFM模型(Attentional Factorization Machine) 模型原始论文 Attentional Factorization M ...
- 非阻塞读和写:str_cli函数
void str_cli(FILE *fp, int sockfd) { int maxfdp1, val, stdineof; ssize_t n, nwritten; fd_set rset, w ...
- docker学习------swarm集群虚机异常关机,node状态为down
1.因昨天虚机异常关闭,导致今天上去查看时,node节点状态显示为down 2.查了些相关资料,找到处理办法(因我的节点没有任何数据,所以直接对其进行清除) docker swarm leave -- ...
- Redis的安装与常用配置说明
1.redis安装步骤 1).下载,上传到Linux服务器,并解压 2).预编译(实际上是检查编译环境的过程) 进入目录: cd /opt/soft/redis-3.2.9/deps/jemall ...
- 虚拟机14安装kail Linux
需要准备虚拟机和kail Linux镜像 1. 2.选择镜像安装,并且添加你的kail Linux镜像文件. 3. 4.在这里需要修改虚拟机名称,也可以不修改就用默认,然后在修改kail Linux的 ...
- cnpm下载包与npm版本不一致的问题解决
参考链接:https://www.jianshu.com/p/949b4e0ae190
- 服务器 隐藏php版本,nginx版本号等
隐藏php版本号: 打开php.ini配置文件 找到 expose_php 关键修改为 off 即可 重启后 web头部就不会有了 隐藏 nginx 服务器版本号: 打开nginx配置文件,在htt ...
- GX/GZOI2019 day2 解题报告
GX/GZOI2019 day2 解题报告 题目链接 逼死强迫症 旅行者 旧词 t1 逼死强迫症 显然地,记 \(f(i)\) 为长度为 \(i\) 的木板的答案,可得: \(\\\) \[f(i)= ...
- 题解-GXOI/GZOI2019 特技飞行
Problem loj3085 bzoj不放题面差评 题意概要:给出两条竖直直线,再给出 \(n\) 架飞机的初始航线:一条接通这两条直线的线段,保证航线交点不在两条直线上.现要求安排所有飞机在航线相 ...
- spring-cloud-ribbon负载均衡组件
Ribbon简介: Spring Cloud Ribbon 是一个基于 HTTP 和 TCP 的客户端负载均衡工具,它基于 Netflix Ribbon 实现. 通过 Spring Cloud 的封装 ...