beifen
Comparison of Models for Predicting the Outcome of Craniocerebral Injury by Using Machine Learning
Introduction
Craniocerebral injury leads to a high probability of death and disability, the accurate and timely prediction of the outcome of this clinical condition is the key point in diagnosis and treatment. However, the traditional evaluation systems of craniocerebral injury mainly depend on the experience of experts and is often not objective enough. Therefore, we built models to predict the outcome by using machine learning to improve the prediction accuracy. However, the generalization error of existing tools may result in wandering in accuracy in different machine learning model.. Therefore, based on the clinical data of patients with craniocerebral injury, we established multiple models using different algorithms to find the appropriate model to improve the accuracy and objective of prediction.
Methods
Date was collected from patients with craniocerebral injury admitted to the Department of trauma surgery in Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences. Inclusion criteria: 1) age 4-81, 2) the head injury history.. We used these data to build a variety of machine learning models including Decision tree, Linear Discriminant, SVM , KNN and Boostedtrap. and compared their performances by means of Receiver Operating Characteristic (ROC) and Area under Curve (AUC), Accuracy, F-Score, Precision Ratio and Recall Ratio, Training Time. All of these results are compared to the classical Logistic regression results. Model building and evaluation using MATLAB2016a(MathWorks, America)on the windows10.
Results
127 patients with craniocerebral injury were enrolled. The accuracy of all machine learning models was between 86.6% and 94.5%, and the Logistic regression's accuracy is …., which indicated that the establishment of machine learning models can be regarded as an effective way to predict the outcome of patients with craniocerebral injury.. Different machine learning models result data have differ performance in our clinical dataset. but except for ****, all of the performance of our algorithm is better than that of the classical Logistic Regression.
Conclusion
In this study, we found that using machine learning models can predict the outcome of patients with craniocerebral injury in a better way.
In addition to more accurate predictions, some machine-learning algorithms can provide better interpretative analysis of clinical data
beifen的更多相关文章
- [django]数据导出excel升级强化版(很强大!)
不多说了,原理采用xlwt导出excel文件,所谓的强化版指的是实现在网页上选择一定条件导出对应的数据 之前我的博文出过这类文章,但只是实现导出数据,这次左思右想,再加上网上的搜索,终于找出方法实现条 ...
- [django]手动数据库备份
基本原理是按钮点击后,系统查询出数据表中信息,然后在网页中导出相关表格! 若有自动数据库备份的兄弟,指点一下! 模板代码: <a href="{% url 'work_backup' ...
- Linux创建定时任务
例如: 要求每天23:59分备份lampp日志: 备份的文件名以当时的时间命名 格式为:201612241852_acces.log 备份到:/tmp/logs/目录下 1.新建shell脚本:vim ...
- mysql在linux下修改存储路径
通过下面几步即可修改路径,这里的路径都是测试的路径,一般默认安装路径在/var/lib/mysql下,真正配置按照真实路径配置. 1.修改/etc/sysconfig/selinux文件:#SELIN ...
- SharePoint 2010 网站备份还原简单介绍
今天尝试了SharePoint2010网站的备份和还原,从网上搜一些文档看看,然后自己试试,感觉和2007的操作没什么太大的区别,跟大家分享下自己尝试的命令行方式和数据库的方式,2007自己常用的也是 ...
- mysqldump备份
备份工具1.mysqldump(数据量很大时不推荐使用) myisam 锁表 innodb 行锁 mysqldump --help | less #查看mysql所有的语法 mysqldu ...
- ASP.NET备份还原数据库
核心技术:using System.Data.SqlClient;using System.IO;string SqlStr1 = "Server=(local);DataBase=mast ...
- Mysql数据库连接、查询、记录集操作代码
Mysql数据库链接代码 function dbConnect($hostname,$username,$pass,$db_name,$pconnect =0) { $func=empty($pcon ...
- tar 命令打包,除了某个目录剩下的都打包
tar czvf beifen.tar.gz ./webdata --exclude webdata/uploadfiles
随机推荐
- HTML5地理定位API在chrome中不能正常使用
navigator.geolocation.getCurrentPosition在chrome中不能正常使用. 经测试发现,FQ后就能正常使用,估计是因为chrome 对这个API的实现使用了goog ...
- python 【pandas】读取excel、csv数据,提高索引速度
问题描述:数据处理,尤其是遇到大量数据且需要for循环处理时,需要消耗大量时间,如代码1所示.通过data['trip_time'][i]的方式会占用大量的时间 代码1 import time t0= ...
- OO第二单元多线程电梯总结分析
一.概述 这一部分的作业考察的关注点与上一次的作业有所不同,上一次的考察重点主要集中在输入输出的判定以及多态的考察上面,而这一次是让我们进行多线程程序的调度与开发.这次开发过程中最大的感受就是自己之前 ...
- maven war项目完整配置
<?xml version="1.0" encoding="UTF-8"?> <project xmlns="http://mave ...
- java 动态增/减集合元素
1. 简介 有时候需要在集合遍历过程中进行增/删,下面介绍几种正确的操作方式. 2. 示例 例如有如下集合[1, 2, 2, 3, 5],需要删除被2整除的元素. import java.util.* ...
- python----常见练习题
1. 冒泡排序 def bubble_sort(lists): len_list=len(lists) for i in range(len_list): for j in range(len_lis ...
- python 变量之小整数池跟大整数池
在python中定义变量会有:id,type,value.对于==比较的是value,对于is比较的是id. 因此,对于相同value的变量,它的type相同,但是它的id值可能不一样.对于相同id的 ...
- vsftpd详细配置
vsftpd配置文件详解 1.默认配置: 1>允许匿名用户和本地用户登陆. anonymous_enable=YES local_enable=YES 2>匿名用户使用的登陆名为ftp或a ...
- TF-IDF特征选择
- arrow function
简介 JavaScript 中,函数可以用箭头语法(”=>”)定义,有时候也叫“lambda表达式”.这种语法主要意图是定义轻量级的内联回调函数.例如: // Arrow function: [ ...