opencv-Python---动态人脸捕捉
本章重点内容:
1、python写人脸识别
2、选择OpenCv框架
案例1
导入图片并打开显示
思路:1、导入库 2、加载图片 3、创建窗口 4、显示图片 5、暂停窗口 6、关闭窗口
#1、导入库
import cv2
# 2、加载图片
img = cv2.imread("5.png")
# 3、创建窗口
cv2.namedWindow('windows_cv2')
# 4、显示图片
cv2.imshow('photo',img)
# 5、暂停窗口
cv2.waitKey(0)
# 6、关闭窗口
cv2.destroyAllWindows()
案例2
在识别的图片上面添加人脸识别:重点注意:需要添加模型库
思路:1、导入库 2、加载图片 3、加载人脸模型 4、调整图片灰度 5、检查人脸
6、标记人脸 7、创建窗口 8、显示图片 9、暂停窗口 10、关闭窗口
"""案例2、图片中人物脸部识别"""
#1、导入库
import cv2
# 2、加载图片
img = cv2.imread('1.jpg')
# 3、加载人脸模型
face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
# 4、调整图片灰度(人脸识别没必要识别颜色,灰度能提高性能)
gray = cv2.cvtColor(img,cv2.COLOR_RGB2GRAY)
# 5、检查人脸(scaleFactor=1.15,minNeighbors=5,flags = cv2.CASCADE_SCALE_IMAGE,minSize=(5,5)) 这几项都可以选择默认)
faces = face_cascade.detectMultiScale(gray,
scaleFactor=1.15,
minNeighbors=5,
flags = cv2.CASCADE_SCALE_IMAGE,
minSize=(5,5))
#6、标记人脸
for (x,y,w,h) in faces:
#里面有4个参数1、写图片2、坐标原点3、识别大小4、颜色5、线宽
cv2.rectangle(img,(x,y),(x+w,y+h),(0,255,0),2) # 7、创建窗口
cv2.namedWindow('windows')
# 8、显示图片
cv2.imshow('picture',img)
# 9、暂停窗口
cv2.waitKey(0)
# 10、关闭窗口
cv2.destroyAllWindows()
案例3
调用摄像头
思路:1、导入库 2、打开摄像头 3、获取摄像头实时画面 4、释放资源 10、关闭窗口
"""案例3、打开电脑摄像头实时画面"""
#1、导入库
import cv2
# 2、打开摄像头
capture = cv2.VideoCapture(0)
# 3、获取摄像头实时画面
cv2.namedWindow('xiong')
while True:
#读取摄像头的帧画面
ret,frame = capture.read()
#显示图片
print(ret)
cv2.imshow('picture',frame)
#暂停窗口
if cv2.waitKey(5) & 0xFF == ord('q'):
break
# 4、释放资源
capture.release()
# 5、关闭窗口
cv2.destroyAllWindows()
案例4
在识别的图片上面添加人脸识别:重点注意:需要添加模型库
思路:1、导入库 2、打开人脸模型 3、打开摄像头 4、创建窗口 5、获取摄像头实时画面 6、释放资源 7、关闭窗口
"""案例4、打开电脑摄像头实时捕捉人脸"""
#1、导入库
import cv2
# 2、加载人脸模型
# faces_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
faces_cascade = cv2.CascadeClassifier('haarcascade_frontalface_alt.xml')
# 3、打开摄像头
capture = cv2.VideoCapture(0)
# 4、创建窗口
cv2.namedWindow('xiong')
# 5、获取摄像头实时画面
while True:
#读取摄像头帧画面 ret打开成功为True ,frame是摄像头画面
ret,frame = capture.read()
#图片调整灰度
gray = cv2.cvtColor(frame,cv2.COLOR_RGB2GRAY)
#检测人脸
faces = faces_cascade.detectMultiScale(gray)
#标记人脸
for (x,y,w,h) in faces:
cv2.rectangle(frame,(x,y),(x+w,y+h),(0,255,0),2)
#显示图片
cv2.imshow('photo',frame)
#暂停窗口
if cv2.waitKey(5) & 0xFF == ord('q'):
break # 6、释放资源
capture.release()
# 7、关闭窗口
cv2.destroyAllWindows()
opencv-Python---动态人脸捕捉的更多相关文章
- OpenCV + python 实现人脸检测(基于照片和视频进行检测)
OpenCV + python 实现人脸检测(基于照片和视频进行检测) Haar-like 通俗的来讲,就是作为人脸特征即可. Haar特征值反映了图像的灰度变化情况.例如:脸部的一些特征能由矩形特征 ...
- 手把手教你如何用 OpenCV + Python 实现人脸识别
下午的时候,配好了OpenCV的Python环境,OpenCV的Python环境搭建.于是迫不及待的想体验一下opencv的人脸识别,如下文. 必备知识 Haar-like 通俗的来讲,就是作为人脸特 ...
- 手把手教你如何用 OpenCV + Python 实现人脸检测
配好了OpenCV的Python环境,OpenCV的Python环境搭建.于是迫不及待的想体验一下opencv的人脸识别,如下文. 必备知识 Haar-like Haar-like百科释义.通俗的来讲 ...
- Android 中使用 dlib+opencv 实现动态人脸检测
1 概述 完成 Android 相机预览功能以后,在此基础上我使用 dlib 与 opencv 库做了一个关于人脸检测的 demo.该 demo 在相机预览过程中对人脸进行实时检测,并将检测到的人脸用 ...
- opencv python训练人脸识别
总计分为三个步骤 一.捕获人脸照片 二.对捕获的照片进行训练 三.加载训练的数据,识别 使用python3.6.8,opencv,numpy,pil 第一步:通过笔记本前置摄像头捕获脸部图片 将捕获的 ...
- opencv+python+dlib人脸关键点检测、实时检测
安装的是anaconde3.python3.7.3,3.7环境安装dlib太麻烦, 在anaconde3中新建环境python3.6.8, 在3.6环境下安装dlib-19.6.1-cp36-cp36 ...
- opencv+python实时人脸检测、磨皮
import numpy as np import cv2 cap = cv2.VideoCapture(0) face_cascade = cv2.CascadeClassifier("d ...
- 使用OpenCV和Python进行人脸识别
介绍 人脸识别是什么?或识别是什么?当你看到一个苹果时,你的大脑会立刻告诉你这是一个苹果.在这个过程中,你的大脑告诉你这是一个苹果水果,用简单的语言来说就是识别.那么什么是人脸识别呢?我肯定你猜对了. ...
- Android+openCV 动态人脸检测
动态人脸检测前提是需要打开摄像头. 网上看了很多教程,我知道的有两种方式打开摄像头: JavaCameraView mCameraView = new JavaCameraView(this, -1) ...
随机推荐
- metasploit 中的DB
渗透测试任务中,主机/服务/漏洞等信息如果手动维护,会带来巨大的工作量. 在metasploit中,这部分工作已经被封装的非常好,每次调用内部模块执行的任务结果都会自动存入DB.通过简单的指令即可以方 ...
- Splash jsfunc() 方法
jsfunc()方法可以直接调用 JavaScript 定义的方法,但是所调用的方法需要用双中括号包围,这相当于实现了 JavaScript 方法到 Lua 脚本的转换 function main(s ...
- Spring transaction事务 roll back各种回滚
Spring的AOP事务管理默认是针对unchecked exception回滚. 也就是默认对RuntimeException()异常极其子类进行事务回滚. Exception作为基类,下面还分ch ...
- iOS autoLayout总结
本文转自 http://ruikq.github.io/ios/autolayout/uiscrollview/2015/01/27/iOS-autolayout%E6%80%BB%E7%BB%93. ...
- WP8.1学习系列(第十八章)——Windows Phone 交互和可用性
本主题讨论了布局会对应用的可用性产生怎样的影响.在应用的可用性上下文中还讨论了其他常用 UI,例如搜索和设置. 在继续使用控件和交互之前,请执行以下操作: 有关概念化应用的策略,请参阅尽你所能,设计最 ...
- shell截取字符串的一些简单方法
一.使用${} 1.${var##*/}该命令的作用是去掉变量var从左边算起的最后一个'/'字符及其左边的内容,返回从左边算起的最后一个'/'(不含该字符)的右边的内容.使用例子及结果如下:
- MFC 常见问题
一 常见变量获得 CDC * cDc=GetDC(); HDC m_Screenhdc = this->GetDC()->m_hDC; // 整个窗口客户区的坐标 this->Ge ...
- spy-debugger 前端调试工具
一站式页面调试.抓包工具.远程调试任何手机浏览器页面,任何手机移动端webview(如:微信,HybirdApp等).支持HTTP/HTTPS,无需USB连接设备. Language: Engl ...
- Linux账号和密码文件 /etc/passwd和/etc/shadow
Linux系统中,所有用户(包括系统管理员)的账号和密码都可以在/etc/passwd和/etc/shadow这两个文件中找到,(用户和密码就放在文件中,不怕被其他人看的或者修改吗?/etc/pass ...
- 【黑金原创教程】【FPGA那些事儿-驱动篇I 】实验二十:SDRAM模块③ — 页读写 α
实验二十:SDRAM模块③ — 页读写 α 完成单字读写与多字读写以后,接下来我们要实验页读写.丑话当前,实验二十的页读写只是实验性质的东西,其中不存在任何实用价值,笔者希望读者可以把它当成页读写的热 ...