Logistic 回归梯度上升优化函数
In [183]:
def loadDataSet():
dataMat = []
labelMat = []
fr = open('testSet.txt')
for line in fr.readlines():
lineArr = line.strip().split()
dataMat.append([1.0,float(lineArr[0]),float(lineArr[1])])
labelMat.append(int(lineArr[2]))
return dataMat,labelMat
def sigmoid(inX):
return 1.0/(1+exp(-inX))
批量梯度下降
def gradAscent(dataMatIn, classLabels):
dataMatrix = mat(dataMatIn)
labelMat = mat(classLabels).transpose()
m,n = shape(dataMatrix)
alpha = 0.001
maxCycles = 500
weights = ones((n,1))
for k in range(maxCycles):
h = sigmoid(dataMatrix*weights) # h是一个矩阵
error = (labelMat - h)
weights = weights + alpha * dataMatrix.transpose() * error
return weights
随机梯度下降
def stocGradAscent0(dataMatrix, classLabels):
m,n = shape(dataMatrix)
alpha = 0.01
weights = ones(n)
#weights = [0.1,0.1,0.1]
for i in range(m):
h = sigmoid(sum(dataMatrix[i]*weights))# h是一个数值
print dataMatrix[i]
print weights
print dataMatrix[i]*weights
error = classLabels[i] - h
weights = weights + alpha * error * dataMatrix[i]
return weights
sum()的参数是一个list 下面是改进的随机梯度上升算法:
def stocGradAscent1(dataMatrix, classLabels, numIter=150):
m,n = shape(dataMatrix)
weights = ones(n)
#weights = [0.1,0.1,0.1]
for j in range(numIter):
dataIndex = range(m)
for i in range(m):
alpha = 4/(1.0+j+i)+0.01
randIndex = int(random.uniform(0,len(dataIndex)))
h = sigmoid(sum(dataMatrix[randIndex]*weights))# h是一个数值
error = classLabels[randIndex] - h
weights = weights + alpha * error * dataMatrix[randIndex]
del(dataIndex[randIndex])
return weights
#import logRegres
dataArr,labelMat = loadDataSet()
#weights=gradAscent(dataArr,labelMat)
weights=stocGradAscent1(array(dataArr),labelMat,500)
def plotBestFit(wei):
import matplotlib.pyplot as plt
weights = wei
dataMat,labelMat = loadDataSet()
dataArr = array(dataMat)
n = shape(dataArr)[0]
xcord1 = []; ycord1 = []
xcord2 = []; ycord2 = []
for i in range(n):
if int(labelMat[i])==1:
xcord1.append(dataArr[i,1]);ycord1.append(dataArr[i,2])
else:
xcord2.append(dataArr[i,1]);ycord2.append(dataArr[i,2])
fig = plt.figure()
ax = fig.add_subplot(111)
ax.scatter(xcord1,ycord1,s=30,c='red',marker='s')
ax.scatter(xcord2,ycord2,s=30,c='green')
x = arange(-3.0,3.0,0.1)
y = (-weights[0]-weights[1]*x)/weights[2]
ax.plot(x,y)
plt.xlabel('X1')
plt.ylabel('X2')
plt.show()
h = subplot(m,n,p)/subplot(mnp) 将figure划分为m×n块,在第p块创建坐标系,并返回它的句柄。当m,n,p<10时,可以简化为subplot(mnp)或者subplot mnp (注:subplot(m,n,p)或者subplot(mnp)此函数最常用:subplot是将多个图画到一个平面上的工具。其中,m表示是图排成m行,n表示图排成n列,也就是整个figure中有n个图是排成一行的,一共m行,如果第一个数字是2就是表示2行图。p是指你现在要把曲线画到figure中哪个图上,最后一个如果是1表示是从左到右第一个位置。 )
from numpy import *
#reload
print weights
plotBestFit(weights)
Logistic 回归梯度上升优化函数的更多相关文章
- logistic回归梯度上升优化算法
# Author Qian Chenglong from numpy import * from numpy.ma import arange def loadDataSet(): dataMat = ...
- 机器学习——Logistic回归
1.基于Logistic回归和Sigmoid函数的分类 2.基于最优化方法的最佳回归系数确定 2.1 梯度上升法 参考:机器学习--梯度下降算法 2.2 训练算法:使用梯度上升找到最佳参数 Logis ...
- 第五章 Logistic回归
第五章 Logistic回归 假设现在有一些数据点,我们利用一条直线对这些点进行拟合(该线称为最佳拟合直线),这个拟合过程就称作回归. 为了实现Logistic回归分类器,我们可以在每个特征上都乘以一 ...
- 【机器学习实战】第5章 Logistic回归
第5章 Logistic回归 Logistic 回归 概述 Logistic 回归虽然名字叫回归,但是它是用来做分类的.其主要思想是: 根据现有数据对分类边界线建立回归公式,以此进行分类. 须知概念 ...
- 机器学习之Logistic 回归算法
1 Logistic 回归算法的原理 1.1 需要的数学基础 我在看机器学习实战时对其中的代码非常费解,说好的利用偏导数求最值怎么代码中没有体现啊,就一个简单的式子:θ= θ - α Σ [( hθ( ...
- 机器学习笔记(四)Logistic回归模型实现
一.Logistic回归实现 (一)特征值较少的情况 1. 实验数据 吴恩达<机器学习>第二课时作业提供数据1.判断一个学生能否被一个大学录取,给出的数据集为学生两门课的成绩和是否被录取 ...
- 05机器学习实战之Logistic 回归
Logistic 回归 概述 Logistic 回归 或者叫逻辑回归 虽然名字有回归,但是它是用来做分类的.其主要思想是: 根据现有数据对分类边界线(Decision Boundary)建立回归公式, ...
- 机器学习实战(Machine Learning in Action)学习笔记————05.Logistic回归
机器学习实战(Machine Learning in Action)学习笔记————05.Logistic回归 关键字:Logistic回归.python.源码解析.测试作者:米仓山下时间:2018- ...
- 机器学习算法( 五、Logistic回归算法)
一.概述 这会是激动人心的一章,因为我们将首次接触到最优化算法.仔细想想就会发现,其实我们日常生活中遇到过很多最优化问题,比如如何在最短时间内从A点到达B点?如何投入最少工作量却获得最大的效益?如何设 ...
随机推荐
- mongodb用mongoose查库的对象,不能增加属性
node + koa2 + mongodb 写了一个给前端的接口 如果不是写这个接口,这辈子都发现不了mongodb里这个大坑 mongoose 是个ODM(Object Document Mappe ...
- Sed&awk笔记之awk篇(转)
Awk是什么 Awk.sed与grep,俗称Linux下的三剑客,它们之间有很多相似点,但是同样也各有各的特色,相似的地方是它们都可以匹配文本,其中sed和awk还可以用于文本编辑,而grep则不具备 ...
- STM32 GPIO 配置之ODR, BSRR, BRR 详解
STM32 GPIO 配置之ODR, BSRR, BRR 详解 用stm32 的配置GPIO 来控制LED 显示状态,可用ODR,BSRR,BRR 直接来控制引脚输出状态. ODR寄存器可读可写:既能 ...
- redis详解(三)-- 面试题
1. 使用Redis有哪些好处? (1) 速度快,因为数据存在内存中,类似于HashMap,HashMap的优势就是查找和操作的时间复杂度都是O(1) (2) 支持丰富数据类型,支持string,li ...
- C#编程(六十三)----------并行LINQ
并行LINQ .NET4在System.Linq命名空间中包含一个新类ParallelEnumerable,可以分解查询的工作使其分布在多个线程上.尽管Enumerable类给IEnumerable& ...
- 【spring boot】【elasticsearch】spring boot整合elasticsearch,启动报错Caused by: java.lang.IllegalStateException: availableProcessors is already set to [8], rejecting [8
spring boot整合elasticsearch, 启动报错: Caused by: java.lang.IllegalStateException: availableProcessors ], ...
- 【nginx】配置Nginx实现负载均衡
一文中已经提到,企业在解决高并发问题时,一般有两个方向的处理策略,软件.硬件,硬件上添加负载均衡器分发大量请求,软件上可在高并发瓶颈处:数据库+web服务器两处添加解决方案,其中web服务器前面一层最 ...
- .NET:强签名程序集的加载问题 之 版本重定向
背景 多数解决方案会包含多个项目,某些支持插件架构的解决方案中,更是包含多个插件项目,这些项目会使用一些第三方NuGet Packages,如果管理不慎,解决方案中会出现多个版本的引用,这在编译期间不 ...
- java获取视频播第一帧
FFMPEG 功能很强大,做视频必备的软件.大家可通过 http://ffmpeg.org/ 了解.Windows版本的软件,可通过 http://ffmpeg.zeranoe.com/builds/ ...
- 苹果无法连接到itunes store怎么办
方法1:设置--还原--还原网络设置,再进app store就可以了.方法2:重置访问限制“设置”–> “通用” –> “访问限制”,开启访问限制5秒,然后再关闭访问限制.方法3:重置当前 ...