http://blog.csdn.net/pipisorry/article/details/39891197

共轭梯度法(Conjugate Gradient)

共轭梯度法(英语:Conjugate gradient method)。是求解数学特定线性方程组的数值解的方法。当中那些矩阵为对称和正定。共轭梯度法是一个迭代方法。它适用于稀疏矩阵线性方程组,由于这些系统对于像Cholesky分解这种直接方法太大了。这种方程组在数值求解偏微分方程时非经常见。

共轭梯度法也能够用于求解无约束的最优化问题。

在数值线性代数中,共轭梯度法是一种求解对称正定线性方程组的迭代方法。

共轭梯度法能够从不同的角度推导而得,包含作为求解最优化问题的共轭方向法的特例,以及作为求解特征值问题的Arnoldi/Lanczos迭代的变种。

title=%E5%8F%8C%E5%85%B1%E8%BD%AD%E6%A2%AF%E5%BA%A6%E6%B3%95&action=edit&redlink=1" class="new" title="双共轭梯度法(页面不存在)">双共轭梯度法提供了一种处理非对称矩阵情况的推广。

基础

共轭向量

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvcGlwaXNvcnJ5/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" width="607" height="154" alt="" />

显然,共轭向量是线性无关向量.

初等变分原理

最速下降算法的有关性质

范数的‖・‖A的定义为‖x‖A=(Ax,x)。

上面定理表明,最速下降法从不论什么一向量x(0)出发,迭代产生的数列总是收敛到原方程Ax=b的解.而收敛速度的快慢则由A的特征值分布所决定.当A的最小特征值和最大特征值相差非常大时λ1<<λn,最速下降法收敛速度非常慢,非常少用于实际计算.

分析最速下降法收敛较慢的原因,能够发现,负梯度方向从局部来看是二次函数的最快下降方向,可是从总体来看,却并不是最好.对于对称正定矩阵A,共轭梯度法考虑选择关于A共轭的向量p1,p2,...取代最速(0)下降法中的负梯度方向,使迭代法对随意给定的初始点x具有有限步收敛性,即经有限步就能够(在理论上)得到问题的准确解.

皮皮blog

共轭梯度算法

计算共轭梯度算法同一时候构造出关于A共轭的向量pi

求解Ax = b的算法。当中A是实对称正定矩阵。

x0 := 0
k := 0
r0 := b-Ax
repeat until rk is "sufficiently small":
k := k + 1
if k = 1
p1 := r0
else
pk:=rk− 1+rk− 1⊤ rk− 1rk− 2⊤ rk− 2 pk− 1{\displaystyle p_{k}:=r_{k-1}+{\frac {r_{k-1}^{\top }r_{k-1}}{r_{k-2}^{\top }r_{k-2}}}~p_{k-1}}
end if
α k:=rk− 1⊤ rk− 1pk⊤ Apk{\displaystyle \alpha _{k}:={\frac {r_{k-1}^{\top }r_{k-1}}{p_{k}^{\top }Ap_{k}}}}
xk := xk-1 + αk pk
rk := rk-1 - αk A pk
end repeat
结果为xk
或者

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvcGlwaXNvcnJ5/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" alt="" />

共轭梯度法评价

  共轭梯度法是介于最速下降法与牛顿法之间的一个方法,它仅需利用一阶导数信息,但克服了最速下降法收敛慢的缺点,又避免了牛顿法须要存储和计算Hesse矩阵并求逆的缺点。共轭梯度法不仅是解决大型线性方程组最实用的方法之中的一个,也是解大型非线性最优化最有效的算法之中的一个。 在各种优化算法中,共轭梯度法是非常重要的一种。
其长处是所需存储量小,具有步收敛性。稳定性高,并且不须要不论什么外来參数。

  下图为共轭梯度法和梯度下降法搜索最优解的路径对照示意图:
 
注:绿色为梯度下降法。红色代表共轭梯度法

from:http://blog.csdn.net/pipisorry/article/details/39891197

ref: [wiki 共轭梯度法] [wiki 共轭梯度法的推导]

[数值分析 钟尔杰]

最优化方法:共轭梯度法(Conjugate Gradient)的更多相关文章

  1. 机器学习&数据挖掘笔记_12(对Conjugate Gradient 优化的简单理解)

    数学优化方法在机器学习算法中至关重要,本篇博客主要来简单介绍下Conjugate Gradient(共轭梯度法,以下简称CG)算法,内容是参考的文献为:An Introduction to the C ...

  2. 对Conjugate Gradient 优化的简单理解

    对Conjugate Gradient 优化的简单理解) 机器学习&数据挖掘笔记_12(对Conjugate Gradient 优化的简单理解) 数学优化方法在机器学习算法中至关重要,本篇博客 ...

  3. Numerical Testing Reportes of A New Conjugate Gradient Projection Method for Convex Constrained Nonlinear Equations

    Numerical Testing Reportes of A New Conjugate Gradient Projection Method for Convex Constrained Nonl ...

  4. 共轭梯度法求解协同过滤中的 ALS

    协同过滤是一类基于用户行为数据的推荐方法,主要是利用已有用户群体过去的行为或意见来预测当前用户的偏好,进而为其产生推荐.能用于协同过滤的算法很多,大致可分为:基于最近邻推荐和基于模型的推荐.其中基于最 ...

  5. L-BFGS

    L-BFGS算法比较适合在大规模的数值计算中,具备牛顿法收敛速度快的特点,但不需要牛顿法那样存储Hesse矩阵,因此节省了大量的空间以及计算资源.本文主要通过对于无约束最优化问题的一些常用算法总结,一 ...

  6. Math concepts / 数学概念

    链接网址:Math concepts / 数学概念 – https://www.codelast.com/math-concepts-%e6%95%b0%e5%ad%a6%e6%a6%82%e5%bf ...

  7. 最优化算法:BFGS算法全称和L-BFGS算法全称

    在最优化算法研究中按时间先后顺序出现了许多算法包括如下几种,这里介绍下他们的全称和英文名称: 1.最速下降法(Gradient descent) 2.牛顿法(Newton method) 3. 共轭梯 ...

  8. [原创]最优化/Optimization文章合集

    转载请注明出处:https://www.codelast.com/ 最优化(Optimization)是应用数学的一个分支,它是研究在给定约束之下如何寻求某些因素(的量),以使某一(或某些)指标达到最 ...

  9. [Math] 常见的几种最优化方法

    我们每个人都会在我们的生活或者工作中遇到各种各样的最优化问题,比如每个企业和个人都要考虑的一个问题“在一定成本下,如何使利润最大化”等.最优化方法是一种数学方法,它是研究在给定约束之下如何寻求某些因素 ...

随机推荐

  1. 【Zookeeper】源码分析之Watcher机制(二)之WatchManager

    一.前言 前面已经分析了Watcher机制中的第一部分,即在org.apache.zookeeper下的相关类,接着来分析org.apache.zookeeper.server下的WatchManag ...

  2. 用Java位运算实现加减乘除四则运算

    转载请注明原文地址:http://www.cnblogs.com/ygj0930/p/6412875.html 感谢博客:http://blog.csdn.net/itismelzp/article/ ...

  3. appium界面运行过程(结合日志截图分析)

    appium界面运行过程: 1.启动一个http服务器:127.0.0.1:47232.根据测试代码setUp()进行初始化,在http服务器上建立一个session对象3.开始调用adb,找到连接上 ...

  4. Jenkins执行批处理文件失败

    今天搭建Jenkins持续集成环境,编译环境是.net,在.net下没有比较好的代码覆盖率测试插件,所以用了开源的OpenCover,计算代码覆盖率,然后用ReportGenerator导出hmtl格 ...

  5. Linux中的共享链接库shared libraries

    可执行文件的静态链接和动态链接静态链接会将需要的库函数在编译时一并包含, 所以体积会比较大. 使用ldd命令查看可执行文件链接的库 $ ldd /sbin/ldconfig not a dynamic ...

  6. Mac OS使用技巧十九:Safari碉堡功能之二查看网页源代码

         由于大三下的时候选修了搜索技术.了解了网络上搜索引擎和网络爬虫的信息扒取的一些东西,后来我们做了一个比較水的东西.就是仅仅扒取了几家较大的下载站点几十个软件的评分下载量等信息,当用户输入一个 ...

  7. Xcode使用小技巧-filter查找功能和查看最近修改的文件

    今天偶然发现了关于Xcode的一个小技巧: 1.查看最近修改的文件 2.使用filter查找制定文件 没错,就是下面这个东西,很容易忽略的一个小工具,在Xcode左下角位置. 通过这个,我们能够在整个 ...

  8. Struts2常见配置(草稿)

    Struts2框架配置文件加载的顺序(了解加载配置文件的顺序,重点掌握struts.xml配置文件) 1.Struts2框架的核心是StrutsPrepareAndExecuteFilter过滤器,该 ...

  9. [转]HTML DIV+CSS 命名规范大全

    原文链接 常用DIV+CSS命名大全集合,即CSS命名规则 我们开发CSS+DIV网页(Xhtml)时候,比较困惑和纠结的事就是CSS命名,特别是新手不知道什么地方该如何命名,怎样命名才是好的方法. ...

  10. mget命令, ftp命令详解

    一:mget命令下载FTP服务器上的多个文件 命令行模式下使用ftp来下载东西还是比较方便的,如果下载一个目录中的多个文件该如何处理呢? 还用每个文件都用get来获得?显然那样很麻烦...... 命令 ...