最优化方法:共轭梯度法(Conjugate Gradient)
http://blog.csdn.net/pipisorry/article/details/39891197
共轭梯度法(Conjugate Gradient)
共轭梯度法(英语:Conjugate gradient method)。是求解数学特定线性方程组的数值解的方法。当中那些矩阵为对称和正定。共轭梯度法是一个迭代方法。它适用于稀疏矩阵线性方程组,由于这些系统对于像Cholesky分解这种直接方法太大了。这种方程组在数值求解偏微分方程时非经常见。
共轭梯度法也能够用于求解无约束的最优化问题。
在数值线性代数中,共轭梯度法是一种求解对称正定线性方程组的迭代方法。
共轭梯度法能够从不同的角度推导而得,包含作为求解最优化问题的共轭方向法的特例,以及作为求解特征值问题的Arnoldi/Lanczos迭代的变种。
title=%E5%8F%8C%E5%85%B1%E8%BD%AD%E6%A2%AF%E5%BA%A6%E6%B3%95&action=edit&redlink=1" class="new" title="双共轭梯度法(页面不存在)">双共轭梯度法
基础
共轭向量
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvcGlwaXNvcnJ5/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" width="607" height="154" alt="" />
显然,共轭向量是线性无关向量.
初等变分原理
最速下降算法的有关性质
范数的‖・‖A的定义为‖x‖A=(Ax,x)。
上面定理表明,最速下降法从不论什么一向量x(0)出发,迭代产生的数列总是收敛到原方程Ax=b的解.而收敛速度的快慢则由A的特征值分布所决定.当A的最小特征值和最大特征值相差非常大时λ1<<λn,最速下降法收敛速度非常慢,非常少用于实际计算.
分析最速下降法收敛较慢的原因,能够发现,负梯度方向从局部来看是二次函数的最快下降方向,可是从总体来看,却并不是最好.对于对称正定矩阵A,共轭梯度法考虑选择关于A共轭的向量p1,p2,...取代最速(0)下降法中的负梯度方向,使迭代法对随意给定的初始点x具有有限步收敛性,即经有限步就能够(在理论上)得到问题的准确解.
共轭梯度算法
计算共轭梯度算法同一时候构造出关于A共轭的向量pi
求解Ax = b的算法。当中A是实对称正定矩阵。
- x0 := 0
- k := 0
- r0 := b-Ax
- repeat until rk is "sufficiently small":
- k := k + 1
- if k = 1
- p1 := r0
- else
- pk:=rk− 1+rk− 1⊤ rk− 1rk− 2⊤ rk− 2 pk− 1{\displaystyle p_{k}:=r_{k-1}+{\frac {r_{k-1}^{\top }r_{k-1}}{r_{k-2}^{\top }r_{k-2}}}~p_{k-1}}
- pk:=rk− 1+rk− 1⊤ rk− 1rk− 2⊤ rk− 2 pk− 1{\displaystyle p_{k}:=r_{k-1}+{\frac {r_{k-1}^{\top }r_{k-1}}{r_{k-2}^{\top }r_{k-2}}}~p_{k-1}}
- end if
- α k:=rk− 1⊤ rk− 1pk⊤ Apk{\displaystyle \alpha _{k}:={\frac {r_{k-1}^{\top }r_{k-1}}{p_{k}^{\top }Ap_{k}}}}
- xk := xk-1 + αk pk
- rk := rk-1 - αk A pk
- end repeat
- 结果为xk
- 或者
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvcGlwaXNvcnJ5/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" alt="" />
共轭梯度法评价
其长处是所需存储量小,具有步收敛性。稳定性高,并且不须要不论什么外来參数。
from:http://blog.csdn.net/pipisorry/article/details/39891197
ref: [wiki 共轭梯度法] [wiki 共轭梯度法的推导]
[数值分析 钟尔杰]
最优化方法:共轭梯度法(Conjugate Gradient)的更多相关文章
- 机器学习&数据挖掘笔记_12(对Conjugate Gradient 优化的简单理解)
数学优化方法在机器学习算法中至关重要,本篇博客主要来简单介绍下Conjugate Gradient(共轭梯度法,以下简称CG)算法,内容是参考的文献为:An Introduction to the C ...
- 对Conjugate Gradient 优化的简单理解
对Conjugate Gradient 优化的简单理解) 机器学习&数据挖掘笔记_12(对Conjugate Gradient 优化的简单理解) 数学优化方法在机器学习算法中至关重要,本篇博客 ...
- Numerical Testing Reportes of A New Conjugate Gradient Projection Method for Convex Constrained Nonlinear Equations
Numerical Testing Reportes of A New Conjugate Gradient Projection Method for Convex Constrained Nonl ...
- 共轭梯度法求解协同过滤中的 ALS
协同过滤是一类基于用户行为数据的推荐方法,主要是利用已有用户群体过去的行为或意见来预测当前用户的偏好,进而为其产生推荐.能用于协同过滤的算法很多,大致可分为:基于最近邻推荐和基于模型的推荐.其中基于最 ...
- L-BFGS
L-BFGS算法比较适合在大规模的数值计算中,具备牛顿法收敛速度快的特点,但不需要牛顿法那样存储Hesse矩阵,因此节省了大量的空间以及计算资源.本文主要通过对于无约束最优化问题的一些常用算法总结,一 ...
- Math concepts / 数学概念
链接网址:Math concepts / 数学概念 – https://www.codelast.com/math-concepts-%e6%95%b0%e5%ad%a6%e6%a6%82%e5%bf ...
- 最优化算法:BFGS算法全称和L-BFGS算法全称
在最优化算法研究中按时间先后顺序出现了许多算法包括如下几种,这里介绍下他们的全称和英文名称: 1.最速下降法(Gradient descent) 2.牛顿法(Newton method) 3. 共轭梯 ...
- [原创]最优化/Optimization文章合集
转载请注明出处:https://www.codelast.com/ 最优化(Optimization)是应用数学的一个分支,它是研究在给定约束之下如何寻求某些因素(的量),以使某一(或某些)指标达到最 ...
- [Math] 常见的几种最优化方法
我们每个人都会在我们的生活或者工作中遇到各种各样的最优化问题,比如每个企业和个人都要考虑的一个问题“在一定成本下,如何使利润最大化”等.最优化方法是一种数学方法,它是研究在给定约束之下如何寻求某些因素 ...
随机推荐
- Asp.Net 之 禁用TextBox的记忆功能
IE提供了一个自动完成功能可以记忆我们的输入内容(如登录帐号等),方便下一次快速地录入类似资料.这确实是一个非常友好的功能,在操作时只需用鼠标双击文本框或输入前几个字符,系统会自动列出以前的录入历史供 ...
- Summarizing NUMA Scheduling两篇文章,解释得不错
http://vxpertise.net/2012/06/summarizing-numa-scheduling/ Sitting on my sofa this morning watching S ...
- spring boot 运行提示:Process finished with exit code 1
spring boot 运行提示:Process finished with exit code 1 经检查发现是由于在application.properties配置文件中将某些自定义配置项移除了, ...
- 无法将 Ethernet0连接到虚拟网络 VMnet8 以及无法使用桥接的详细解决步骤
前言 首先我们需要明确如下表所示的对应关系: 网络类型 网络适配器名 Bridged VMnet0 NAT VMnet8 Host-only VMnet1 解决"无法将 ...
- MAC快捷方式记录
刚刚转到MAC,很多功能发现不能用,总结一下: 刷新页面:command+r 命令行,到行首:control+a 命令行,到行尾:control+e vim,到行尾:shift+$ vim,到行首:s ...
- hdu4403A very hard Aoshu problem 线段树
//给一个长度为大于2小于15的字符串 //在当中间加'+'或'='使得其成为一个等式的方法的个数 //枚举等号位置.暴力搜索加号加的位置 #include<cstdio> #includ ...
- wwindows文件放入linux后多出换行符
将 windows文件移到linux系统下会在文件行末尾多了一个换行符^M 使用命令cat -v tmp.c可以看到每行后边有^M字符 为了解决这个问题,我们用如下命令:touch love_tmp. ...
- 【Linux】找出文件之间的差异
使用命令comm可以找出2个文件之间的差异 现在有文件如下: Linux:/qinys # cat A.txt apple lemon onion orange pear Linux:/qinys # ...
- java 多重循环
//http://www.weixueyuan.net/view/6311.html //多重循环 import java.util.Scanner; public class Test16{ pub ...
- DNS服务器的维护与故障排除
1. DNS故障诊断的常用工具或命令 诊断DNS解析故障的四个常用命令工具: ①unbound-checkconf:用于检查unbound服务器配置文件的语法错误 ②unbound-control:是 ...