激活函数ReLU、Leaky ReLU、PReLU和RReLU
“激活函数”能分成两类——“饱和激活函数”和“非饱和激活函数”。
sigmoid和tanh是“饱和激活函数”,而ReLU及其变体则是“非饱和激活函数”。使用“非饱和激活函数”的优势在于两点:
1.首先,“非饱和激活函数”能解决所谓的“梯度消失”问题。
2.其次,它能加快收敛速度。
Sigmoid函数需要一个实值输入压缩至[0,1]的范围
σ(x) = 1 / (1 + exp(−x))
tanh函数需要讲一个实值输入压缩至 [-1, 1]的范围
tanh(x) = 2σ(2x) − 1
ReLU
ReLU函数代表的的是“修正线性单元”,它是带有卷积图像的输入x的最大函数(x,o)。ReLU函数将矩阵x内所有负值都设为零,其余的值不变。ReLU函数的计算是在卷积之后进行的,因此它与tanh函数和sigmoid函数一样,同属于“非线性激活函数”。这一内容是由Geoff Hinton首次提出的。
ELUs
ELUs是“指数线性单元”,它试图将激活函数的平均值接近零,从而加快学习的速度。同时,它还能通过正值的标识来避免梯度消失的问题。根据一些研究,ELUs分类精确度是高于ReLUs的。下面是关于ELU细节信息的详细介绍:

Leaky ReLUs
ReLU是将所有的负值都设为零,相反,Leaky ReLU是给所有负值赋予一个非零斜率。Leaky ReLU激活函数是在声学模型(2013)中首次提出的。以数学的方式我们可以表示为:

参数化修正线性单元(PReLU)
PReLU可以看作是Leaky ReLU的一个变体。在PReLU中,负值部分的斜率是根据数据来定的,而非预先定义的。作者称,在ImageNet分类(2015,Russakovsky等)上,PReLU是超越人类分类水平的关键所在。
随机纠正线性单元(RReLU)
“随机纠正线性单元”RReLU也是Leaky ReLU的一个变体。在RReLU中,负值的斜率在训练中是随机的,在之后的测试中就变成了固定的了。RReLU的亮点在于,在训练环节中,aji是从一个均匀的分布U(I,u)中随机抽取的数值。形式上来说,我们能得到以下结果:

总结
下图是ReLU、Leaky ReLU、PReLU和RReLU的比较:

PReLU中的ai是根据数据变化的;
Leaky ReLU中的ai是固定的;
RReLU中的aji是一个在一个给定的范围内随机抽取的值,这个值在测试环节就会固定下来。
转载:http://i.ifeng.com/lady/vnzq/news?m=1&aid=124686188&mid=2EjJF3&all=1&p=2
激活函数ReLU、Leaky ReLU、PReLU和RReLU的更多相关文章
- [转]激活函数ReLU、Leaky ReLU、PReLU和RReLU
“激活函数”能分成两类——“饱和激活函数”和“非饱和激活函数”. sigmoid和tanh是“饱和激活函数”,而ReLU及其变体则是“非饱和激活函数”.使用“非饱和激活函数”的优势在于两点: 1 ...
- 深度学习的激活函数 :sigmoid、tanh、ReLU 、Leaky Relu、RReLU、softsign 、softplus、GELU
深度学习的激活函数 :sigmoid.tanh.ReLU .Leaky Relu.RReLU.softsign .softplus.GELU 2019-05-06 17:56:43 wamg潇潇 阅 ...
- 深度学习原理与框架-神经网络架构 1.神经网络构架 2.激活函数(sigmoid和relu) 3.图片预处理(减去均值和除标准差) 4.dropout(防止过拟合操作)
神经网络构架:主要时表示神经网络的组成,即中间隐藏层的结构 对图片进行说明:我们可以看出图中的层数分布: input layer表示输入层,维度(N_num, input_dim) N_num表示输 ...
- 神经网络中的激活函数tanh sigmoid RELU softplus softmatx
所谓激活函数,就是在神经网络的神经元上运行的函数,负责将神经元的输入映射到输出端.常见的激活函数包括Sigmoid.TanHyperbolic(tanh).ReLu. softplus以及softma ...
- python实现并绘制 sigmoid函数,tanh函数,ReLU函数,PReLU函数
Python绘制正余弦函数图像 # -*- coding:utf-8 -*- from matplotlib import pyplot as plt import numpy as np impor ...
- 激活函数:Sigmod&tanh&Softplus&Relu详解
什么是激活函数? 激活函数(Activation functions)对于人工神经网络模型去学习.理解非常复杂和非线性的函数来说具有十分重要的作用. 它们将非线性特性引入到我们的网络中.其主要目的是将 ...
- 激活函数,Batch Normalization和Dropout
神经网络中还有一些激活函数,池化函数,正则化和归一化函数等.需要详细看看,啃一啃吧.. 1. 激活函数 1.1 激活函数作用 在生物的神经传导中,神经元接受多个神经的输入电位,当电位超过一定值时,该神 ...
- [DeeplearningAI笔记]神经网络与深度学习3.2_3.11(激活函数)浅层神经网络
觉得有用的话,欢迎一起讨论相互学习~Follow Me 3.2 神经网络表示 对于一个由输入层,隐藏层,输出层三层所组成的神经网络来说,输入层,即输入数据被称为第0层,中间层被称为第1层,输出层被称为 ...
- Pytorch1.0深度学习:损失函数、优化器、常见激活函数、批归一化详解
不用相当的独立功夫,不论在哪个严重的问题上都不能找出真理:谁怕用功夫,谁就无法找到真理. —— 列宁 本文主要介绍损失函数.优化器.反向传播.链式求导法则.激活函数.批归一化. 1 经典损失函数 1. ...
随机推荐
- 【爬虫】通用抽取网页URL
package model; import java.io.BufferedReader; import java.io.File; import java.io.FileInputStream; i ...
- Wireshark抓包工具HttpAnalyzerStdV7
http.request.full_uri contains "XXXserver/api/" http.host contains "XXX5.单位.com"
- 猥琐百度杯猥琐CTF
其实不难,但是作为我这个代码菜鸡+脑洞菜鸡+黑阔菜鸡而言确实挺难. 题目源码: <?php error_reporting(0); session_start(); require('./fla ...
- mongoDb CPU利用率100%的分析和解决
在公司的项目中,突然出现过一个情况,mongodb 的CPU利用率到达100%,导致服务器这边卡死了,请求了半天无响应,提示请求超时. 因为,当时APP用户可能会在某一个时间段集中的使用,所以,请求量 ...
- [转]BigDecimal不整除异常
通过BigDecimal的divide方法进行除法时当不整除,出现无限循环小数时,就会抛异常的 异 常 :java.lang.ArithmeticException: Non-terminatin ...
- Exception in thread "main" java.lang.UnsatisfiedLinkError: org.apache.hadoop.io .nativeio.NativeIO$Windows.createDirectoryWithMode0(Ljava/lang/String;I)V
首先,遇到这个问题的一个原因是windows环境中没有配置hadoophome.配置之后加入winutils工具 第二个原因,pom中执行的hadoop的版本与window环境中的hadoop的版本不 ...
- 【Linux/CentOS】Boolean ftp_home_dir is not defined
安装完vsftpd软件后,因为CentOS系统的SELinux安全策略默认是没有开启FTP服务,直接访问会报错500 OOPS,所以需要修改为允许使用FTP服务. 目标:希望ftp用户可以访问自己的家 ...
- C语言 · 数的运算
算法提高 数的运算 时间限制:1.0s 内存限制:512.0MB 输入一个正整数(范围[1..10000]),打印其平方(不保留小数位).平方根.倒数.(用指针实现,保留2位小数,输 ...
- C语言 · 交换Easy
算法提高 交换Easy 时间限制:1.0s 内存限制:512.0MB 问题描述 给定N个整数组成的序列,每次交换当前第x个与第y个整数,要求输出最终的序列. 输入格式 第一行为序列的 ...
- centos7安装elasticsearch5.2.2
这篇文章比较初级,介绍的是centos7下elasticsearch的安装. 主要阅读对象是初级运维.初级大数据工程师.java工程师.想了解es的.net工程师以及所有感兴趣的朋友. 文章的目的是为 ...