什么是Convolutional Neural Network(卷积神经网络)?

  最早应该是LeCun(1998)年论文提出,其结果如下:运用于手写数字识别。详细就不介绍,可参考zouxy09的专栏,主要关注convolution、pooling,个人理解是这样的,convolution是做特征检测,得到多个feature maps,而pooling是对特征进行筛选,提取关键信息,过滤掉一些噪音,另一方面是减少训练参数。

Single Layer CNN

  与图像处理不同,对于自然语言处理任务来说,输入一般是用矩阵表示的句子或文档。对于句子矩阵,每一行表示一个单词,每个词可以用向量表示(word2vec or GloVe, but they could also be one-hot vectors)。下面介绍一种简单的cnn结构,一层convolution+一层pooling。来自Yoon Kim(2014)的论文。

  该CNN很简单,共分四层,

  第一层是词向量层,doc中的每个词,都将其映射到词向量空间,假设词向量为k维,则n个词映射后,相当于生成一张n*k维的图像;

  第二层是卷积层,多个滤波器作用于词向量层,不同滤波器生成不同的feature map;

  第三层是pooling层,取每个feature map的最大值,这样操作可以处理变长文档,因为第三层输出只依赖于滤波器的个数;

  第四层是一个全连接的softmax层,输出是每个类目的概率。除此之外,输入层可以有两个channel,其中一个channel采用预先利用word2vec训练好的词向量,另一个channel的词向量可以通过backpropagation在训练过程中调整。

  这样做的结果是:在目前通用的7个分类评测任务中,有4个取得了state-of-the-art的结果,另外3个表现接近最好水平。

  首先做一些符号说明:输入是词向量Xi(长度是k),句子向量Xi:n是词向量的级联(拼接成长向量),filter是w,可看成一个滑动窗口,这里的w是向量,长度是hk(滑动窗口包含h个词)。

  Convolution:卷积操作,f是激活函数,ci表示卷积得到的特征。通过滑动filter w,与句子所有词进行卷积,可得到feature map 

  

  Pooling:使用max-pooling获得feature map中最大的值,然后使用多个filter获得不同n-grams的特征。

  Multi-Channel:这里很有意思,输入句子时,使用两个通道(channel,可以认为是输入copy一份),都用word2vec初始化,其中一个词的向量保持不变(static),另一个是non-static,在BP过程不断修改,最后再pooling前对两个通道得到的卷积特征进行累加。

  Classification:通过pooling,得到句子最后的特征向量,然后直接用softmax进行分类。

【论文笔记】CNN for NLP的更多相关文章

  1. Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现(转)

    Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现 zouxy09@qq.com http://blog.csdn.net/zouxy09          自己平时看了一些论文, ...

  2. 论文笔记:CNN经典结构2(WideResNet,FractalNet,DenseNet,ResNeXt,DPN,SENet)

    前言 在论文笔记:CNN经典结构1中主要讲了2012-2015年的一些经典CNN结构.本文主要讲解2016-2017年的一些经典CNN结构. CIFAR和SVHN上,DenseNet-BC优于ResN ...

  3. 论文笔记:CNN经典结构1(AlexNet,ZFNet,OverFeat,VGG,GoogleNet,ResNet)

    前言 本文主要介绍2012-2015年的一些经典CNN结构,从AlexNet,ZFNet,OverFeat到VGG,GoogleNetv1-v4,ResNetv1-v2. 在论文笔记:CNN经典结构2 ...

  4. 【转载】GAN for NLP 论文笔记

    本篇随笔为转载,原贴地址,知乎:GAN for NLP(论文笔记及解读).

  5. CNN for NLP (CS224D)

    斯坦福课程CS224d: Deep Learning for Natural Language Processing lecture13:Convolutional neural networks - ...

  6. Multimodal —— 看图说话(Image Caption)任务的论文笔记(一)评价指标和NIC模型

    看图说话(Image Caption)任务是结合CV和NLP两个领域的一种比较综合的任务,Image Caption模型的输入是一幅图像,输出是对该幅图像进行描述的一段文字.这项任务要求模型可以识别图 ...

  7. 论文笔记之:Visual Tracking with Fully Convolutional Networks

    论文笔记之:Visual Tracking with Fully Convolutional Networks ICCV 2015  CUHK 本文利用 FCN 来做跟踪问题,但开篇就提到并非将其看做 ...

  8. 论文笔记(1):Deep Learning.

    论文笔记1:Deep Learning         2015年,深度学习三位大牛(Yann LeCun,Yoshua Bengio & Geoffrey Hinton),合作在Nature ...

  9. 论文笔记:Towards Diverse and Natural Image Descriptions via a Conditional GAN

    论文笔记:Towards Diverse and Natural Image Descriptions via a Conditional GAN ICCV 2017 Paper: http://op ...

  10. 【论文笔记】Malware Detection with Deep Neural Network Using Process Behavior

    [论文笔记]Malware Detection with Deep Neural Network Using Process Behavior 论文基本信息 会议: IEEE(2016 IEEE 40 ...

随机推荐

  1. Java 过滤特殊字符的 正则表达式

    Java正则表达式学习: 因为正则表达式是一个很庞杂的体系,此例仅举些入门的概念,更多的请参阅相关书籍及自行摸索. \\ 反斜杠 \t 间隔 ('\u0009') \n 换行 ('\u000A') \ ...

  2. GCD 容易让人迷惑的几个问题

    写在开头: 本文旨在阐述一些大家容易产生迷惑的GCD相关内容,如果是需要了解一些GCD概念或者基础用法,可以看看这两篇文章:GCD 扫盲篇.巧谈GCD . 目录: 迷惑一:队列和线程的关系 迷惑二:G ...

  3. libev ev_init分析

    /* these may evaluate ev multiple times, and the other arguments at most once */ /* either use ev_in ...

  4. Magento模块升级修改数据库表结构

    Magento支持在模块中创建.删除.更新数据库表及字段.通过该方式,在插件开发的过程中,添加和修改字段变成了一件非常轻松的事情.只需要修改模块的版本号,同时在文件中添加一个符合命名规则的脚本就可以了 ...

  5. 如何设置IIS程序池的回收时间,才能最大程度的减少对用户的影响?

    作为.Net开发人员,其实对IIS的应用程序池知之甚少,在工作中我也有几次遇到过网站无故打不开的情况,找了半天原因也找不到是怎么造成的,有一次我给网站找了一个程序程序池后发现就能正常访问了,这也让我对 ...

  6. 记录EntityValidationErrors的详细信息

    0.一个问题 使用过EF的人相信都会遇到Validation failed for one or more entities. See ‘EntityValidationErrors’这种异常,这是由 ...

  7. Tomcat之如何使用Nginx进行集群部署

    目录结构: contents structure [+] 1,为什么需要集群 2,如何使用Nginx部署tomcat集群 2.1,下载Nginx 2.2,在同一台电脑上部署多个Tomcat服务器 2. ...

  8. 【struts2】struts2的execAndWait拦截器使用

    使用execAndWait拦截器可以在等待较长时间的后台处理中增加等待页面.实现如下图所示的效果: 1)struts.xml主要部分 <action name="test" ...

  9. SQL Tuning Advisor

    SQL Tuning Advisorsql调优顾问可提供的建议有:-收集对象的统计信息-创建索引-重写sql语句-创建sql profile-创建sql plan baseline SQL Tunin ...

  10. 异步加载js文件的方法总结

    方法一,jQuery.getScript HTML 代码: 代码如下 复制代码 <button id="go">Run</button><div cl ...