【BZOJ1004】[HNOI2008]Cards Burnside引理
【BZOJ1004】[HNOI2008]Cards
题意:把$n$张牌染成$a,b,c$,3种颜色。其中颜色为$a,b,c$的牌的数量分别为$sa,sb,sc$。并且给出$m$个置换,保证这$m$个置换加上本身的置换能构成一个置换群,两种染色方案被认为是相同的当且仅当一种方案可以通过某个置换变成另一种。求不同的染色方案数。答案对$P$取模。
$sa,sb,sc\le 20,m\le 60$
题解:这里对每种颜色都有一个限制,怎么办呢?
回顾从Burnside引理到Pólya定理的推导过程。
如果一个染色方案是不动点,那么它的每个循环中的所有元素的颜色都相同。
所以对于一个置换$f$,我们找到它的一个循环,大小为$k$,我们可以将其看成一个大小为$k$的物品,然后跑多维背包求出方案数,即为不动点的数目。
最后套用Burnside引理即可。
#include <cstdio>
#include <cstring>
#include <iostream>
int n,m,sa,sb,sc,P;
int ans,f[21][21];
int vis[61],to[61];
inline int solve()
{
memset(f,0,sizeof(f)),memset(vis,0,sizeof(vis));
int i,j,a,b,t;
f[0][0]=1;
for(i=1;i<=n;i++) if(!vis[i])
{
for(t=0,j=i;!vis[j];vis[j]=1,j=to[j],t++);
for(a=sa;a>=0;a--) for(b=sb;b>=0;b--)
{
if(a>=t) f[a][b]+=f[a-t][b];
if(b>=t) f[a][b]+=f[a][b-t];
f[a][b]%=P;
}
}
return f[sa][sb];
}
inline int pw(int x,int y)
{
int z=1;
while(y)
{
if(y&1) z=z*x%P;
x=x*x%P,y>>=1;
}
return z;
}
int main()
{
scanf("%d%d%d%d%d",&sa,&sb,&sc,&m,&P),n=sa+sb+sc;
int i,j;
for(j=1;j<=m;j++)
{
for(i=1;i<=n;i++) scanf("%d",&to[i]);
ans+=solve();
}
for(i=1;i<=n;i++) to[i]=i;
ans+=solve();
printf("%d",ans*pw(m+1,P-2)%P);
return 0;
}
【BZOJ1004】[HNOI2008]Cards Burnside引理的更多相关文章
- bzoj1004: [HNOI2008]Cards(burnside引理+DP)
题目大意:3种颜色,每种染si个,有m个置换,求所有本质不同的染色方案数. 置换群的burnside引理,还有个Pólya过几天再看看... burnside引理:有m个置换k种颜色,所有本质不同的染 ...
- BZOJ1004: [HNOI2008]Cards(Burnside引理 背包dp)
Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 4255 Solved: 2582[Submit][Status][Discuss] Descript ...
- bzoj1004 [HNOI2008]Cards Burnside 引理+背包
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=1004 题解 直接 Burnside 引理就可以了. 要计算不动点的个数,那么对于一个长度为 \ ...
- 【bzoj1004】[HNOI2008]Cards Burnside引理+背包dp
题目描述 用三种颜色染一个长度为 $n=Sr+Sb+Sg$ 序列,要求三种颜色分别有 $Sr,Sb,Sg$ 个.给出 $m$ 个置换,保证这 $m$ 个置换和置换 ${1,2,3,...,n\choo ...
- luogu P1446 [HNOI2008]Cards burnside引理 置换 不动点
LINK:Cards 不太会burnside引理 而这道题则是一个应用. 首先 一个非常舒服的地方是这道题给出了m个本质不同的置换 然后带上单位置换就是m+1个置换. burnside引理: 其中D( ...
- BZOJ 1004 HNOI2008 Cards Burnside引理
标题效果:特定n张卡m换人,编号寻求等价类 数据保证这m换人加上置换群置换后本身构成 BZOJ坑爹0.0 条件不那么重要出来尼玛怎么做 Burnside引理--昨晚为了做这题硬啃了一晚上白书0.0 都 ...
- BZOJ1004 HNOI2008 Cards Burnside、背包
传送门 在没做这道题之前天真的我以为\(Polya\)可以完全替代\(Burnside\) 考虑\(Burnside\)引理,它要求的是对于置换群中的每一种置换的不动点的数量. 既然是不动点,那么对于 ...
- bzoj1004 [HNOI2008]Cards Burnside定理+背包
题目传送门 思路:首先是Burnside引理,要先学会这个博客. Burnside引理我们总结一下,就是 每种置换下不动点的数量之和除以置换的总数,得到染色方案的数量. 这道题,显然每种 ...
- [BZOJ1004] [HNOI2008]Cards解题报告(Burnside引理)
Description 小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有多少种染色方案,Sun很快就给出了答案.进一步,小春要求染出Sr张红 ...
随机推荐
- 【WP8】自定义配置存储类
之前在WP7升级到WP8的时候遇到配置不兼容的问题 情景:之前只有一个WP7版本,现在需要发布WP8版本,让用户可以从原来的WP7版本升级到WP8版本 一般情况下从WP7升级到WP8没什么问题 但是在 ...
- jquery获取表单数据方法$.serializeArray()获取不到disabled的值
$.serializeArray()获取不到disabled的值 经实验,$.serializeArray()获取不到disabled的值,如果想要让input元素变为不可用,可以把input设为re ...
- Winform窗体控件自适应大小
自己写的winform窗体自适应大小代码,代码比较独立,很适合贴来贴去不会对原有程序造成影响,可以直接继承此类或者把代码复制到自己的代码里面直接使用 借鉴了网上的一些资料,最后采用重写WndProc方 ...
- opengl库区分:glut、freeglut、glfw、glew、gl3w、glad
//oepngl库 opengl原生库 gl* 随opengl一起发布 opengl实用库 glu* 随opengl一起发布 opengl实用工具库glut glut* 需要下载配置安装(太老了!) ...
- iOS UITextField控件总结
先声明下面总结不是自己写的. 参考网址:http://blog.csdn.net/tskyfree/article/details/8121915 //初始化textfield并设置位置及大小 U ...
- Dubbo -- 系统学习 笔记 -- 示例 -- 只订阅
Dubbo -- 系统学习 笔记 -- 目录 示例 想完整的运行起来,请参见:快速启动,这里只列出各种场景的配置方式 只订阅 问题 为方便开发测试,经常会在线下共用一个所有服务可用的注册中心,这时,如 ...
- Java -- 获取指定接口的所有实现类或获取指定类的所有继承类
Class : ClassUtil package pri.lime.main; import java.io.File; import java.io.IOException; import jav ...
- lua 按拉分析与合成
-- 将数值分解成bytes_table local function decompose_byte(data) if not data then return data end local tb = ...
- Express框架中如何引用ejs模板引擎
1.如何在项目中安装ejs模板引擎 在NodeJS指南中利用利用以下命令建立网站的基本结构: express -t ejs microblog 运行这个命令后继续运行 cd microblog &am ...
- Unity Shader 获取模型空间坐标
CGPROGRAM // Physically based Standard lighting model, and enable shadows on all light types #pragma ...