【BZOJ1004】[HNOI2008]Cards

题意:把$n$张牌染成$a,b,c$,3种颜色。其中颜色为$a,b,c$的牌的数量分别为$sa,sb,sc$。并且给出$m$个置换,保证这$m$个置换加上本身的置换能构成一个置换群,两种染色方案被认为是相同的当且仅当一种方案可以通过某个置换变成另一种。求不同的染色方案数。答案对$P$取模。

$sa,sb,sc\le 20,m\le 60$

题解:这里对每种颜色都有一个限制,怎么办呢?

回顾从Burnside引理到Pólya定理的推导过程。

如果一个染色方案是不动点,那么它的每个循环中的所有元素的颜色都相同。

所以对于一个置换$f$,我们找到它的一个循环,大小为$k$,我们可以将其看成一个大小为$k$的物品,然后跑多维背包求出方案数,即为不动点的数目。

最后套用Burnside引理即可。

#include <cstdio>
#include <cstring>
#include <iostream>
int n,m,sa,sb,sc,P;
int ans,f[21][21];
int vis[61],to[61];
inline int solve()
{
memset(f,0,sizeof(f)),memset(vis,0,sizeof(vis));
int i,j,a,b,t;
f[0][0]=1;
for(i=1;i<=n;i++) if(!vis[i])
{
for(t=0,j=i;!vis[j];vis[j]=1,j=to[j],t++);
for(a=sa;a>=0;a--) for(b=sb;b>=0;b--)
{
if(a>=t) f[a][b]+=f[a-t][b];
if(b>=t) f[a][b]+=f[a][b-t];
f[a][b]%=P;
}
}
return f[sa][sb];
}
inline int pw(int x,int y)
{
int z=1;
while(y)
{
if(y&1) z=z*x%P;
x=x*x%P,y>>=1;
}
return z;
}
int main()
{
scanf("%d%d%d%d%d",&sa,&sb,&sc,&m,&P),n=sa+sb+sc;
int i,j;
for(j=1;j<=m;j++)
{
for(i=1;i<=n;i++) scanf("%d",&to[i]);
ans+=solve();
}
for(i=1;i<=n;i++) to[i]=i;
ans+=solve();
printf("%d",ans*pw(m+1,P-2)%P);
return 0;
}

【BZOJ1004】[HNOI2008]Cards Burnside引理的更多相关文章

  1. bzoj1004: [HNOI2008]Cards(burnside引理+DP)

    题目大意:3种颜色,每种染si个,有m个置换,求所有本质不同的染色方案数. 置换群的burnside引理,还有个Pólya过几天再看看... burnside引理:有m个置换k种颜色,所有本质不同的染 ...

  2. BZOJ1004: [HNOI2008]Cards(Burnside引理 背包dp)

    Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4255  Solved: 2582[Submit][Status][Discuss] Descript ...

  3. bzoj1004 [HNOI2008]Cards Burnside 引理+背包

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=1004 题解 直接 Burnside 引理就可以了. 要计算不动点的个数,那么对于一个长度为 \ ...

  4. 【bzoj1004】[HNOI2008]Cards Burnside引理+背包dp

    题目描述 用三种颜色染一个长度为 $n=Sr+Sb+Sg$ 序列,要求三种颜色分别有 $Sr,Sb,Sg$ 个.给出 $m$ 个置换,保证这 $m$ 个置换和置换 ${1,2,3,...,n\choo ...

  5. luogu P1446 [HNOI2008]Cards burnside引理 置换 不动点

    LINK:Cards 不太会burnside引理 而这道题则是一个应用. 首先 一个非常舒服的地方是这道题给出了m个本质不同的置换 然后带上单位置换就是m+1个置换. burnside引理: 其中D( ...

  6. BZOJ 1004 HNOI2008 Cards Burnside引理

    标题效果:特定n张卡m换人,编号寻求等价类 数据保证这m换人加上置换群置换后本身构成 BZOJ坑爹0.0 条件不那么重要出来尼玛怎么做 Burnside引理--昨晚为了做这题硬啃了一晚上白书0.0 都 ...

  7. BZOJ1004 HNOI2008 Cards Burnside、背包

    传送门 在没做这道题之前天真的我以为\(Polya\)可以完全替代\(Burnside\) 考虑\(Burnside\)引理,它要求的是对于置换群中的每一种置换的不动点的数量. 既然是不动点,那么对于 ...

  8. bzoj1004 [HNOI2008]Cards Burnside定理+背包

    题目传送门 思路:首先是Burnside引理,要先学会这个博客. Burnside引理我们总结一下,就是 每种置换下不动点的数量之和除以置换的总数,得到染色方案的数量.        这道题,显然每种 ...

  9. [BZOJ1004] [HNOI2008]Cards解题报告(Burnside引理)

    Description 小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有多少种染色方案,Sun很快就给出了答案.进一步,小春要求染出Sr张红 ...

随机推荐

  1. mocha框架下,异步测试代码错误造成的问题----用例超时错误

    今天用抹茶(mocha)做个测试,发现有一个测试项目总是超时: describe("DbFactory functions",function(){ it("query ...

  2. 禁止选中文本JS

    if (typeof(element.onselectstart) != "undefined") { // IE下禁止元素被选取 element.onselectstart = ...

  3. mybatis-generator 的坑我都走了一遍

    一.简介 mybatis-geneator是一款mybatis自动代码生成工具,可以通过配置,快速生成mapper和xml文件. 二.配置方法 在项目的pom文件中添加插件配置 <plugin& ...

  4. mysql5.7系列修改root默认密码

    操作系统为centos7 64 1.修改 /etc/my.cnf,在 [mysqld] 小节下添加一行:skip-grant-tables=1 这一行配置让 mysqld 启动时不对密码进行验证 2. ...

  5. 解决win10休眠后无法唤醒

    在控制面板-电源选项-编辑计划设置-高级电源设置中把"睡眠"的选项中休眠调整为从不,"电源按键和盖子"选项中也都设为睡眠,这样使得无论你是使用电池还是电源,系统 ...

  6. grid网格的流动一

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  7. python3存入redis是bytes

    在python3 中使用redis存储数据,存进去的是bytes >>> import redis >>> import time >>> imp ...

  8. Exception occurred while processing this request, check the log for more information!安装ActiveMq-5.14.1 配置安全验证报错解决

    安装ActiveMq-5.14.1  并配置了安全验证成功后,客户端也连接成功了.服务端也能通过http://IP:8161登录到控制台. 但是在点击队列,想要查看队列视图时报错,如下图: 查看日志发 ...

  9. yarn基础架构

    Yarn的基本架构 Yarn是Hadoop2.0中的资源管理系统,它的基本设计思想是将MRv1中的JobTracker拆分成两个独立的服务:一个全局的资源管理器ResourceManager和每个应用 ...

  10. 利用Python爆破数据库备份文件

    某次测试过程中,发现PHP备份功能代码如下: // 根据时间生成备份文件名 $file_name = 'D' . date('Ymd') . 'T' . date('His'); $sql_file_ ...